5 research outputs found

    Determining Curie temperature of (Ga,Mn)As samples based on electrical transport measurements: low Curie temperature case

    Full text link
    In this paper we show that the widely accepted method of the determination of Curie temperature (TC) in (Ga,Mn)As samples, based on the position of the peak in the temperature derivative of the resistivity,completely fails in the case of non-metallic and low-TC unannealed samples. In this case we propose an alternative method, also based on electric transport measurements, which exploits temperature dependence of the second derivative of the resistivity upon magnetic field.Comment: 5 pages, 3 figure

    Expression of cellular retinoic acid-binding protein I and II (CRABP I and II) in embryonic mouse hearts treated with retinoic acid

    Get PDF
    Cellular retinoic acid binding proteins are considered to be involved in retinoic acid (RA) signaling pathways. Our aim was to compare the expression and localization of cellular retinoic acid binding proteins I and II (CRABP I and II) in embryonic mouse hearts during normal development and after a single teratogenic dose of RA. Techniques such as real-time PCR, RT-PCR, Western blots and immunostaining were employed to examine hearts from embryos at 9-17 dpc. RA treatment at 8.5dpc affects production of CRABP I and II in the heart in the 48-h period. Changes in expression of mRNA for retinaldehyde dehydrogenase II (Raldh2), Crabp1 and Crabp2 genes also occur within the same time window (i.e. 10-11dpc) after RA treatment. In the embryonic control heart these proteins are localized in groups of cells within the outflow tract (OT), and the atrioventricular endocardial cushions. A gradient of labeling is observed with CRABP II but not for CRABP I along the myocardium of the looped heart at 11 dpc; this gradient is abolished in hearts treated with RA, whereas an increase of RALDH2 staining has been observed at 10 dpc in RA-treated hearts. Some populations of endocardial endothelial cells were intensively stained with anti-CRABP II whereas CRABP I was negative in these structures. These results suggest that CRABP I and II are independently regulated during heart development, playing different roles in RA signaling, essential for early remodeling of the heart tube and alignment of the great arteries to their respective ventricles

    Galvanomagnetic methods of Curie temperature determination in (Ga,Mn)As

    No full text
    We critically discuss various experimental methods to determine Curie temperature TC of (Ga,Mn)As thin layers or other conducting magnetic materials by means of electric charge transport measurements. They all base on the influence of sample magnetization on the magnetoresistivity tensor ρ̂ and are an alternative to the method based upon an analysis of the temperature derivative of the sample resistance (Novák et al., 2008). These methods can be applied even when standard SQUID magnetometers are difficult or impossible to use – for example for extremely small samples or in the case of experiments performed at very specific physical conditions, e.g. at high hydrostatic pressure inside the clamp cell. We show that the use of the so called Arrott plot prepared with the use of high magnetic field isotherms ρxx(H0),ρxy(H0) (H0 – external magnetic field) may lead to substantial (of the order of 10 K) divergence of the obtained TC values depending on the assumptions which are necessary to make in this case and depending on the direction of a magnetic anisotropy easy axis. We also propose a number of ways how to obtain, basing on low magnetic field isotherms ρxx(H0),ρxy(H0), clear and characteristic features which are closely related to the ferromagnetic–paramagnetic phase transition
    corecore