4 research outputs found

    Table_1_Resilience of bumblebee foraging behavior despite colony size reduction.xlsx

    No full text
    Foraging behavior is driven by diverse factors, notably life history traits. Foraging strategies are particularly complex among eusocial species such as bumblebees, because they depend primarily on the needs of the colony, rather than on individual’s needs. Colony size, i.e. the number of workers in a colony vary a lot among eusocial insects. While a large colony can be adaptive, several drivers can strongly decrease colony size, like pesticides or high temperatures. In this study, we used the bumblebee Bombus terrestris to assess if workers adapted their foraging behavior to such rapid decreases in colony size. We conducted the foraging experiments with two plant species commonly used by bumblebees: Borago officinalis and Echium plantagineum. Several foraging parameters were measured: foraging time, number of foraging trips, number of workers foraging, handling time and visiting rate. Despite a drastic reduction in colony size, nearly all the foraging behavior parameters were unaffected by the colony size reduction. Colonies that were subject to a large decrease in workers instead displayed high resilience and behavioral plasticity by quickly increasing the proportion of foragers. Ultimately, further research should assess if this consistency in foraging behavior also allows bumblebee colonies to maintain both the efficiency of the resources collection and pollination.</p

    DataSheet_1_Resilience of bumblebee foraging behavior despite colony size reduction.pdf

    No full text
    Foraging behavior is driven by diverse factors, notably life history traits. Foraging strategies are particularly complex among eusocial species such as bumblebees, because they depend primarily on the needs of the colony, rather than on individual’s needs. Colony size, i.e. the number of workers in a colony vary a lot among eusocial insects. While a large colony can be adaptive, several drivers can strongly decrease colony size, like pesticides or high temperatures. In this study, we used the bumblebee Bombus terrestris to assess if workers adapted their foraging behavior to such rapid decreases in colony size. We conducted the foraging experiments with two plant species commonly used by bumblebees: Borago officinalis and Echium plantagineum. Several foraging parameters were measured: foraging time, number of foraging trips, number of workers foraging, handling time and visiting rate. Despite a drastic reduction in colony size, nearly all the foraging behavior parameters were unaffected by the colony size reduction. Colonies that were subject to a large decrease in workers instead displayed high resilience and behavioral plasticity by quickly increasing the proportion of foragers. Ultimately, further research should assess if this consistency in foraging behavior also allows bumblebee colonies to maintain both the efficiency of the resources collection and pollination.</p

    DataSheet_1_Comparison of two Phaeodactylum tricornutum ecotypes under nitrogen starvation and resupply reveals distinct lipid accumulation strategies but a common degradation process.pdf

    No full text
    IntroductionPhaeodactylum tricornutum is a model species frequently used to study lipid metabolism in diatoms. When exposed to a nutrient limitation or starvation, diatoms are known to accumulate neutral lipids in cytoplasmic lipid droplets (LDs). Those lipids are produced partly de novo and partly from the recycle of plastid membrane lipids. Under a nitrogen resupply, the accumulated lipids are catabolized, a phenomenon about which only a few data are available. Various strains of P. tricornutum have been isolated around the world that may differ in lipid accumulation patterns.MethodsTo get further information on this topic, two genetically distant ecotypes of P. tricornutum (Pt1 and Pt4) have been cultivated under nitrogen deprivation during 11 days followed by a resupply period of 3 days. The importance of cytoplasmic LDs relative to the plastid was assessed by a combination of confocal laser scanning microscopy and cell volume estimation using bright field microscopy pictures.Results and discussionWe observed that in addition to a basal population of small LDs (0.005 μm3 to 0.7 μm3) present in both strains all along the experiment, Pt4 cells immediately produced two large LDs (up to 12 μm3 after 11 days) while Pt1 cells progressively produced a higher number of smaller LDs (up to 7 μm3 after 11 days). In this work we showed that, in addition to intracellular available space, lipid accumulation may be limited by the pre-starvation size of the plastid as a source of membrane lipids to be recycled. After resupplying nitrogen and for both ecotypes, a fragmentation of the largest LDs was observed as well as a possible migration of LDs to the vacuoles that would suggest an autophagic degradation. Altogether, our results deepen the understanding of LDs dynamics and open research avenues for a better knowledge of lipid degradation in diatoms.</p

    Supplementary data from Response of CO<sub>2</sub>-starved diatom <i>Phaeodactylum tricornutum</i> to light intensity transition

    No full text
    In this study, we investigated the responses of <i>Phaeodactylum tricornutum</i> cells acclimated to 300 µmol m<sup>−2</sup> s<sup>−1</sup> photon flux density to an increase (1000 µmol m<sup>−2</sup> s<sup>−1</sup>) or decrease (30 µmol m<sup>−2</sup><sub> </sub>s<sup>−1</sup>) photon flux densities. The light shift occurred abruptly after 5 days of growth and the acclimation to new conditions was followed during the next 6 days at the physiological and molecular levels. The molecular data reflect a rearrangement of carbon metabolism towards the production of PEP and/or pyruvate. These intermediates were used differently by the cell as a function of the photon flux density: under low light, the photosynthesis was depressed while respiration was increased. Under high light, lipids and proteins accumulated. Of great interest, under high light, the genes coding for the synthesis of aromatic amino acids and phenolic compounds were upregulated suggesting that the Shikimate pathway was activated.This article is part of the themed issue ‘The peculiar carbon metabolism in diatoms’
    corecore