18 research outputs found
Two Tetra-Cd<sup>II</sup>-Substituted Vanadogermanate Frameworks
Two
new tetra-Cd<sup>II</sup>-substituted vanadogermanate frameworks
{(CdX)<sub>4</sub>Ge<sub>8</sub>ÂV<sup>IV</sup><sub>10</sub>O<sub>46</sub>(H<sub>2</sub>O)Â[V<sup>III</sup>(H<sub>2</sub>O)<sub>2</sub>]<sub>4</sub>Â(GeO<sub>2</sub>)<sub>4</sub>}·8H<sub>2</sub>O (X = ethyleneÂdiamine (en, <b>1</b>) and 1,2-diaminoÂpropane
(dap, <b>2</b>)) were hydrothermally prepared and characterized
by IR spectra, elemental analysis, powder X-ray diffraction (PXRD),
energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy
(XPS), thermogravimetric analysis (TGA), and X-ray single-crystal
diffraction. Both are isomorphic, and their 3-D frameworks are made
up of tetra-Cd<sup>II</sup>-substituted {(CdX)<sub>4</sub>Ge<sub>8</sub>ÂV<sup>IV</sup><sub>10</sub>O<sub>46</sub>Â(H<sub>2</sub>O)}<sup>12–</sup> fundamental building units interconnected
through planar tetra-V<sup>III</sup> [V<sup>III</sup><sub>4</sub>O<sub>2</sub>(H<sub>2</sub>O)<sub>8</sub>]<sup>8–</sup> clusters
and tetrahedral GeO<sub>4</sub> bridges. In the unique {(CdX)<sub>4</sub>Ge<sub>8</sub>ÂV<sup>IV</sup><sub>10</sub>O<sub>46</sub>Â(H<sub>2</sub>O)}<sup>12–</sup> cage, four [Ge<sub>2</sub>O<sub>7</sub>] dimers and four CdO<sub>4</sub>N<sub>2</sub> trigonal
prisms are alternately concatenated by μ<sub>3</sub>-O bridges
to create a round {Ge<sub>8</sub>Cd<sub>4</sub>O<sub>28</sub>(X)<sub>4</sub>}<sup>16–</sup> fragment, five VO<sub>5</sub> groups
are linked by sharing edges to generate a pentanuclear [V<sub>5</sub>O<sub>17</sub>] subunit, and then the {Ge<sub>8</sub>Cd<sub>4</sub>O<sub>28</sub>(X)<sub>4</sub>}<sup>16–</sup> fragment is sandwiched
by two V<sub>5</sub>O<sub>17</sub> subunits <i>via</i> sharing
O-atoms producing a <i>D</i><sub>4<i>h</i></sub>-symmetric {(CdX)<sub>4</sub>Ge<sub>8</sub>ÂV<sup>IV</sup><sub>10</sub>O<sub>46</sub>Â(H<sub>2</sub>O)}<sup>12–</sup> cage with a free water molecule located at the center. As we know,
both display unprecedented 3-D organic–inorganic hybrid frameworks
built up from the largest number of transition-metal-substituted vanadogermanate
{(CdX)<sub>4</sub>Ge<sub>8</sub>V<sup>IV</sup><sub>10</sub>O<sub>46</sub>}<sup>12–</sup> cluster shells linked by both GeO<sub>4</sub> tetrahedra and rare [V<sup>III</sup><sub>4</sub>O<sub>2</sub>(H<sub>2</sub>O)<sub>8</sub>]<sup>8–</sup> clusters. Magnetic measurements
reveal the antiferromagnetic couplings within the magnetic vanadium
centers
Two Tetra-Cd<sup>II</sup>-Substituted Vanadogermanate Frameworks
Two
new tetra-Cd<sup>II</sup>-substituted vanadogermanate frameworks
{(CdX)<sub>4</sub>Ge<sub>8</sub>ÂV<sup>IV</sup><sub>10</sub>O<sub>46</sub>(H<sub>2</sub>O)Â[V<sup>III</sup>(H<sub>2</sub>O)<sub>2</sub>]<sub>4</sub>Â(GeO<sub>2</sub>)<sub>4</sub>}·8H<sub>2</sub>O (X = ethyleneÂdiamine (en, <b>1</b>) and 1,2-diaminoÂpropane
(dap, <b>2</b>)) were hydrothermally prepared and characterized
by IR spectra, elemental analysis, powder X-ray diffraction (PXRD),
energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy
(XPS), thermogravimetric analysis (TGA), and X-ray single-crystal
diffraction. Both are isomorphic, and their 3-D frameworks are made
up of tetra-Cd<sup>II</sup>-substituted {(CdX)<sub>4</sub>Ge<sub>8</sub>ÂV<sup>IV</sup><sub>10</sub>O<sub>46</sub>Â(H<sub>2</sub>O)}<sup>12–</sup> fundamental building units interconnected
through planar tetra-V<sup>III</sup> [V<sup>III</sup><sub>4</sub>O<sub>2</sub>(H<sub>2</sub>O)<sub>8</sub>]<sup>8–</sup> clusters
and tetrahedral GeO<sub>4</sub> bridges. In the unique {(CdX)<sub>4</sub>Ge<sub>8</sub>ÂV<sup>IV</sup><sub>10</sub>O<sub>46</sub>Â(H<sub>2</sub>O)}<sup>12–</sup> cage, four [Ge<sub>2</sub>O<sub>7</sub>] dimers and four CdO<sub>4</sub>N<sub>2</sub> trigonal
prisms are alternately concatenated by μ<sub>3</sub>-O bridges
to create a round {Ge<sub>8</sub>Cd<sub>4</sub>O<sub>28</sub>(X)<sub>4</sub>}<sup>16–</sup> fragment, five VO<sub>5</sub> groups
are linked by sharing edges to generate a pentanuclear [V<sub>5</sub>O<sub>17</sub>] subunit, and then the {Ge<sub>8</sub>Cd<sub>4</sub>O<sub>28</sub>(X)<sub>4</sub>}<sup>16–</sup> fragment is sandwiched
by two V<sub>5</sub>O<sub>17</sub> subunits <i>via</i> sharing
O-atoms producing a <i>D</i><sub>4<i>h</i></sub>-symmetric {(CdX)<sub>4</sub>Ge<sub>8</sub>ÂV<sup>IV</sup><sub>10</sub>O<sub>46</sub>Â(H<sub>2</sub>O)}<sup>12–</sup> cage with a free water molecule located at the center. As we know,
both display unprecedented 3-D organic–inorganic hybrid frameworks
built up from the largest number of transition-metal-substituted vanadogermanate
{(CdX)<sub>4</sub>Ge<sub>8</sub>V<sup>IV</sup><sub>10</sub>O<sub>46</sub>}<sup>12–</sup> cluster shells linked by both GeO<sub>4</sub> tetrahedra and rare [V<sup>III</sup><sub>4</sub>O<sub>2</sub>(H<sub>2</sub>O)<sub>8</sub>]<sup>8–</sup> clusters. Magnetic measurements
reveal the antiferromagnetic couplings within the magnetic vanadium
centers
Two Tetra-Cd<sup>II</sup>-Substituted Vanadogermanate Frameworks
Two
new tetra-Cd<sup>II</sup>-substituted vanadogermanate frameworks
{(CdX)<sub>4</sub>Ge<sub>8</sub>ÂV<sup>IV</sup><sub>10</sub>O<sub>46</sub>(H<sub>2</sub>O)Â[V<sup>III</sup>(H<sub>2</sub>O)<sub>2</sub>]<sub>4</sub>Â(GeO<sub>2</sub>)<sub>4</sub>}·8H<sub>2</sub>O (X = ethyleneÂdiamine (en, <b>1</b>) and 1,2-diaminoÂpropane
(dap, <b>2</b>)) were hydrothermally prepared and characterized
by IR spectra, elemental analysis, powder X-ray diffraction (PXRD),
energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy
(XPS), thermogravimetric analysis (TGA), and X-ray single-crystal
diffraction. Both are isomorphic, and their 3-D frameworks are made
up of tetra-Cd<sup>II</sup>-substituted {(CdX)<sub>4</sub>Ge<sub>8</sub>ÂV<sup>IV</sup><sub>10</sub>O<sub>46</sub>Â(H<sub>2</sub>O)}<sup>12–</sup> fundamental building units interconnected
through planar tetra-V<sup>III</sup> [V<sup>III</sup><sub>4</sub>O<sub>2</sub>(H<sub>2</sub>O)<sub>8</sub>]<sup>8–</sup> clusters
and tetrahedral GeO<sub>4</sub> bridges. In the unique {(CdX)<sub>4</sub>Ge<sub>8</sub>ÂV<sup>IV</sup><sub>10</sub>O<sub>46</sub>Â(H<sub>2</sub>O)}<sup>12–</sup> cage, four [Ge<sub>2</sub>O<sub>7</sub>] dimers and four CdO<sub>4</sub>N<sub>2</sub> trigonal
prisms are alternately concatenated by μ<sub>3</sub>-O bridges
to create a round {Ge<sub>8</sub>Cd<sub>4</sub>O<sub>28</sub>(X)<sub>4</sub>}<sup>16–</sup> fragment, five VO<sub>5</sub> groups
are linked by sharing edges to generate a pentanuclear [V<sub>5</sub>O<sub>17</sub>] subunit, and then the {Ge<sub>8</sub>Cd<sub>4</sub>O<sub>28</sub>(X)<sub>4</sub>}<sup>16–</sup> fragment is sandwiched
by two V<sub>5</sub>O<sub>17</sub> subunits <i>via</i> sharing
O-atoms producing a <i>D</i><sub>4<i>h</i></sub>-symmetric {(CdX)<sub>4</sub>Ge<sub>8</sub>ÂV<sup>IV</sup><sub>10</sub>O<sub>46</sub>Â(H<sub>2</sub>O)}<sup>12–</sup> cage with a free water molecule located at the center. As we know,
both display unprecedented 3-D organic–inorganic hybrid frameworks
built up from the largest number of transition-metal-substituted vanadogermanate
{(CdX)<sub>4</sub>Ge<sub>8</sub>V<sup>IV</sup><sub>10</sub>O<sub>46</sub>}<sup>12–</sup> cluster shells linked by both GeO<sub>4</sub> tetrahedra and rare [V<sup>III</sup><sub>4</sub>O<sub>2</sub>(H<sub>2</sub>O)<sub>8</sub>]<sup>8–</sup> clusters. Magnetic measurements
reveal the antiferromagnetic couplings within the magnetic vanadium
centers
Novel Three-Dimensional Organic–Inorganic Heterometallic Hybrid Built by Sandwich-Type Tetra-Mn-Substituted Germanotungstates through Mixed 3d and 4f Metal Linkers
The
reaction of trivacant Keegin germanotungstate [A-α-GeW<sub>9</sub>O<sub>34</sub>]<sup>10–</sup> with Mn<sup>2+</sup> and
Ce<sup>4+</sup> cations in the presence of oxalate ligand under hydrothermal
conditions led to the isolation of a novel organic–inorganic
hybrid 3d–4f heterometallic germanotungstate K<sub>4</sub>Na<sub>4</sub>[Ce<sub>2</sub>(ox)<sub>3</sub>(H<sub>2</sub>O)<sub>2</sub>]<sub>2</sub>{[Mn(H<sub>2</sub>O)<sub>3</sub>]<sub>2</sub>[Mn<sub>4</sub>(GeW<sub>9</sub>O<sub>34</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]·14H<sub>2</sub>O (<b>1</b>) (ox = oxalate),
which has been characterized
by elemental analysis, IR spectroscopy, thermogravimetric (TG) analysis,
and single-crystal X-ray crystallography. Interestingly, each tetra-Mn<sup>II</sup>-substituted sandwich-type unit acts as 14-dentate ligands
to link eight Ce<sup>3+</sup> centers and six Mn<sup>2+</sup> centers
further into a three-dimensional (3D) architecture. The 3D structure
can be considered as two parts: one is the two-dimensional layer formed
by sandwich-type [Mn<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>(GeW<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]<sup>12–</sup> fragments
and Mn<sup>2+</sup> linkers; the other layer is constructed from Ce<sup>3+</sup> cations and oxalate bridges, and the two layers are combined
together alternately through W–O–Ce–O–W
linkers, resulting in the 3D framework. Notably, <b>1</b> exhibits
the first 3d–4f 3D organic–inorganic hybrid framework
constructed by sandwich-type TM-substituted polyoxoanions and mixed
3d and 4f metal linkers in POM chemistry
Novel Three-Dimensional Organic–Inorganic Heterometallic Hybrid Built by Sandwich-Type Tetra-Mn-Substituted Germanotungstates through Mixed 3d and 4f Metal Linkers
The
reaction of trivacant Keegin germanotungstate [A-α-GeW<sub>9</sub>O<sub>34</sub>]<sup>10–</sup> with Mn<sup>2+</sup> and
Ce<sup>4+</sup> cations in the presence of oxalate ligand under hydrothermal
conditions led to the isolation of a novel organic–inorganic
hybrid 3d–4f heterometallic germanotungstate K<sub>4</sub>Na<sub>4</sub>[Ce<sub>2</sub>(ox)<sub>3</sub>(H<sub>2</sub>O)<sub>2</sub>]<sub>2</sub>{[Mn(H<sub>2</sub>O)<sub>3</sub>]<sub>2</sub>[Mn<sub>4</sub>(GeW<sub>9</sub>O<sub>34</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]·14H<sub>2</sub>O (<b>1</b>) (ox = oxalate),
which has been characterized
by elemental analysis, IR spectroscopy, thermogravimetric (TG) analysis,
and single-crystal X-ray crystallography. Interestingly, each tetra-Mn<sup>II</sup>-substituted sandwich-type unit acts as 14-dentate ligands
to link eight Ce<sup>3+</sup> centers and six Mn<sup>2+</sup> centers
further into a three-dimensional (3D) architecture. The 3D structure
can be considered as two parts: one is the two-dimensional layer formed
by sandwich-type [Mn<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>(GeW<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]<sup>12–</sup> fragments
and Mn<sup>2+</sup> linkers; the other layer is constructed from Ce<sup>3+</sup> cations and oxalate bridges, and the two layers are combined
together alternately through W–O–Ce–O–W
linkers, resulting in the 3D framework. Notably, <b>1</b> exhibits
the first 3d–4f 3D organic–inorganic hybrid framework
constructed by sandwich-type TM-substituted polyoxoanions and mixed
3d and 4f metal linkers in POM chemistry
Synergistic Combination of Multi-Zr<sup>IV</sup> Cations and Lacunary Keggin Germanotungstates Leading to a Gigantic Zr<sub>24</sub>-Cluster-Substituted Polyoxometalate
Synergistic
directing roles of six lacunary fragments resulted
in an unprecedented Zr<sub>24</sub>-cluster substituted polyÂ(polyoxotungstate)
Na<sub>10</sub>ÂK<sub>22</sub>Â[Zr<sub>24</sub>ÂO<sub>22</sub>Â(OH)<sub>10</sub>Â(H<sub>2</sub>O)<sub>2</sub>Â(W<sub>2</sub>ÂO<sub>10</sub>ÂH)<sub>2</sub>Â(GeW<sub>9</sub>ÂO<sub>34</sub>)<sub>4</sub>Â(GeW<sub>8</sub>ÂO<sub>31</sub>)<sub>2</sub>]·85H<sub>2</sub>O (Na<sub>10</sub>K<sub>22</sub>·<b>1</b>·85H<sub>2</sub>O), which contains
the largest [Zr<sub>24</sub>O<sub>22</sub>(OH)<sub>10</sub>(H<sub>2</sub>O)<sub>2</sub>] (Zr<sub>24</sub>) cluster in all the Zr-based
polyÂ(polyoxometalate)Âs to date. The most remarkable feature is that
the centrosymmetric Zr<sub>24</sub>-cluster-based hexamer contains
two symmetry-related [Zr<sub>12</sub>ÂO<sub>11</sub>Â(OH)<sub>5</sub>Â(H<sub>2</sub>ÂO)Â(W<sub>2</sub>ÂO<sub>10</sub>H)Â(GeW<sub>9</sub>ÂO<sub>34</sub>)<sub>2</sub>Â(GeW<sub>8</sub>ÂO<sub>31</sub>)]<sup>16–</sup> trimers via six μ<sub>3</sub>-oxo bridges and was simultaneously
trapped by three types of different segments of <i>B</i>-α-GeW<sub>9</sub>O<sub>34</sub>, <i>B</i>-α-GeW<sub>8</sub>O<sub>31</sub>, and W<sub>2</sub>O<sub>10</sub>. The other
interesting characteristic is that there are two pairs of intriguing
triangular atom alignments: one is composed of the ZrÂ(2,4,6,8,11)
and W21 atoms and the other contains the Ge(1–3), ZrÂ(3,5,7,9,10,12)
and W26 atoms, and the Zr5 atom is inside the triangle; a linking
mode is unobserved. The oxygenation reactions of thioethers by H<sub>2</sub>O<sub>2</sub> were evaluated when Na<sub>10</sub>K<sub>22</sub>·<b>1</b>·85H<sub>2</sub>O served as a catalyst.
Results show that it is an effective catalyst for oxygenation of thioethers
by H<sub>2</sub>O<sub>2</sub>. The unique redox property of oxygen-enriched
polyoxotungstate fragments and Lewis acidity of the Zr cluster imbedded
in Na<sub>10</sub>K<sub>22</sub>·<b>1</b>·85H<sub>2</sub>O provide a sufficient driving force for the catalytic conversion
from thioethers to sulfoxides/sulfones
First Tungstoantimonate-Based Transition-Metal–Lanthanide Heterometallic Hybrids Functionalized by Amino Acid Ligands
By the routine aqueous solution method,
a series of transition-metal–lanthanide
heterometallic tungstoantimonates [LnÂ(H<sub>2</sub>O)<sub>8</sub>]<sub>2</sub>Â[Fe<sub>4</sub>(H<sub>2</sub>O)<sub>8</sub>(thr)<sub>2</sub>]Â[B-β-SbW<sub>9</sub>O<sub>33</sub>]<sub>2</sub>·22H<sub>2</sub>O [Ln = Pr<sup>III</sup> (<b>1</b>), Nd<sup>III</sup> (<b>2</b>), Sm<sup>III</sup> (<b>3</b>), Eu<sup>III</sup> (<b>4</b>), Gd<sup>III</sup> (<b>5</b>), Dy<sup>III</sup> (<b>6</b>), Lu<sup>III</sup> (<b>7</b>), thr
= threonine] were prepared and structurally characterized by multiple
testing techniques. The common structural characteristic of <b>1</b>–<b>7</b> is that they are isomorphous and all
consist of a [Fe<sub>4</sub>(H<sub>2</sub>O)<sub>8</sub>(thr)<sub>2</sub>Â(B-β-SbW<sub>9</sub>O<sub>33</sub>)<sub>2</sub>]<sup>6–</sup> subunit with two supporting [LnÂ(H<sub>2</sub>O)<sub>8</sub>]<sup>3+</sup> cations on both sides. It should be
pointed out that two thr ligands in the [Fe<sub>4</sub>(H<sub>2</sub>O)<sub>8</sub>(thr)<sub>2</sub>Â(B-β-SbW<sub>9</sub>O<sub>33</sub>)<sub>2</sub>]<sup>6–</sup> subunit substitute for
two water ligands in the classical [Fe<sub>4</sub>(H<sub>2</sub>O)<sub>10</sub>Â(B-β-SbW<sub>9</sub>O<sub>33</sub>)<sub>2</sub>]<sup>6–</sup> polyoxoanion. As far as we know, <b>1</b>–<b>7</b> represents the first organic–inorganic
tungstoantimonate hybrids consisting of transition metal and lanthanide
cations and amino acid components. The fluorescence behavior of <b>4</b> has been measured and manifests the remarkable fluorescence
feature resulting from the emission signature of Eu<sup>III</sup> cations.
Furthermore, the solid-state electrochemistry and electrocatalytic
performances of <b>1</b> have been measured in 0.5 mol L<sup>–1</sup> Na<sub>2</sub>SO<sub>4</sub>+H<sub>2</sub>SO<sub>4</sub> aqueous solution, and the results show that <b>1</b> illustrates comparatively apparent catalytic activities toward the
BrO<sub>3</sub><sup>–</sup> and H<sub>2</sub>O<sub>2</sub> reduction.
The magnetic properties of <b>3</b> and <b>6</b> have
been studied
Synergistic Combination of Multi-Zr<sup>IV</sup> Cations and Lacunary Keggin Germanotungstates Leading to a Gigantic Zr<sub>24</sub>-Cluster-Substituted Polyoxometalate
Synergistic
directing roles of six lacunary fragments resulted
in an unprecedented Zr<sub>24</sub>-cluster substituted polyÂ(polyoxotungstate)
Na<sub>10</sub>ÂK<sub>22</sub>Â[Zr<sub>24</sub>ÂO<sub>22</sub>Â(OH)<sub>10</sub>Â(H<sub>2</sub>O)<sub>2</sub>Â(W<sub>2</sub>ÂO<sub>10</sub>ÂH)<sub>2</sub>Â(GeW<sub>9</sub>ÂO<sub>34</sub>)<sub>4</sub>Â(GeW<sub>8</sub>ÂO<sub>31</sub>)<sub>2</sub>]·85H<sub>2</sub>O (Na<sub>10</sub>K<sub>22</sub>·<b>1</b>·85H<sub>2</sub>O), which contains
the largest [Zr<sub>24</sub>O<sub>22</sub>(OH)<sub>10</sub>(H<sub>2</sub>O)<sub>2</sub>] (Zr<sub>24</sub>) cluster in all the Zr-based
polyÂ(polyoxometalate)Âs to date. The most remarkable feature is that
the centrosymmetric Zr<sub>24</sub>-cluster-based hexamer contains
two symmetry-related [Zr<sub>12</sub>ÂO<sub>11</sub>Â(OH)<sub>5</sub>Â(H<sub>2</sub>ÂO)Â(W<sub>2</sub>ÂO<sub>10</sub>H)Â(GeW<sub>9</sub>ÂO<sub>34</sub>)<sub>2</sub>Â(GeW<sub>8</sub>ÂO<sub>31</sub>)]<sup>16–</sup> trimers via six μ<sub>3</sub>-oxo bridges and was simultaneously
trapped by three types of different segments of <i>B</i>-α-GeW<sub>9</sub>O<sub>34</sub>, <i>B</i>-α-GeW<sub>8</sub>O<sub>31</sub>, and W<sub>2</sub>O<sub>10</sub>. The other
interesting characteristic is that there are two pairs of intriguing
triangular atom alignments: one is composed of the ZrÂ(2,4,6,8,11)
and W21 atoms and the other contains the Ge(1–3), ZrÂ(3,5,7,9,10,12)
and W26 atoms, and the Zr5 atom is inside the triangle; a linking
mode is unobserved. The oxygenation reactions of thioethers by H<sub>2</sub>O<sub>2</sub> were evaluated when Na<sub>10</sub>K<sub>22</sub>·<b>1</b>·85H<sub>2</sub>O served as a catalyst.
Results show that it is an effective catalyst for oxygenation of thioethers
by H<sub>2</sub>O<sub>2</sub>. The unique redox property of oxygen-enriched
polyoxotungstate fragments and Lewis acidity of the Zr cluster imbedded
in Na<sub>10</sub>K<sub>22</sub>·<b>1</b>·85H<sub>2</sub>O provide a sufficient driving force for the catalytic conversion
from thioethers to sulfoxides/sulfones
Novel One-Dimensional Organic–Inorganic Polyoxometalate Hybrids Constructed from Heteropolymolybdate Units and Copper–Aminoacid Complexes
Two unique organic–inorganic
hybrid heteropolymolybdates
with copper–aminoacid complexes [CuÂ(arg)<sub>2</sub>]<sub>2</sub>[(CuO<sub>6</sub>)ÂMo<sub>6</sub>O<sub>18</sub>(As<sub>3</sub>O<sub>3</sub>)<sub>2</sub>]·4 H<sub>2</sub>O (<b>1</b>) and
[CuÂ(arg)<sub>2</sub>]<sub>3</sub>[TeMo<sub>6</sub>O<sub>24</sub>]·8H<sub>2</sub>O (<b>2</b>) (arg = l-arginine) have been prepared
under the 110 °C hydrothermal environments and structurally characterized
by elemental analyses, IR spectra, thermogravimetric (TG) analyses,
and single-crystal X-ray diffraction. <b>1</b> stands for the
first one-dimensional (1D) chain organic–inorganic hybrid arsenomolybdate
constructed from lantern-shaped [(CuO<sub>6</sub>)ÂMo<sub>6</sub>O<sub>18</sub>(As<sub>3</sub>O<sub>3</sub>)<sub>2</sub>]<sup>4–</sup> units through dinuclear [Cu<sub>2</sub>(arg)<sub>4</sub>]<sup>4+</sup> connectors, whereas <b>2</b> represents an unprecedented 1D
chain organic–inorganic hybrid telluromolybdate built by Anderson-type
[TeMo<sub>6</sub>O<sub>24</sub>]<sup>6–</sup> fragments via
trinuclear [Cu<sub>3</sub>(arg)<sub>6</sub>]<sup>6+</sup> bridges.
Variable-temperature magnetic susceptibilities of <b>1</b> and <b>2</b> have been investigated and both illustrate the weak antiferromagnetic
coupling within copper centers mediated by the carboxyl groups of
arg ligands. Moreover, the solid-state electrochemical and electrocatalytic
properties of <b>1</b> have been carried out in 1 mol L<sup>–1</sup> H<sub>2</sub>SO<sub>4</sub> aqueous solution by entrapping
it in a carbon paste electrode. <b>1</b> displays apparent electrocatalytic
activities toward the reduction of nitrite and bromate
Two Families of Rare-Earth-Substituted Dawson-type Monomeric and Dimeric Phosphotungstates Functionalized by Carboxylic Ligands
Two
series of novel organic–inorganic hybrid carboxylated rare-earth-substituted
monolacunary Dawson-type phosphotungstate monomers [Hdap]<sub>4</sub>Â[REÂ(H<sub>2</sub>O)Â(Hpic)<sub>3</sub>]Â[REÂ(Hpic)<sub>2</sub> (α<sub>2</sub>-P<sub>2</sub>W<sub>17</sub>O<sub>61</sub>)]·21H<sub>2</sub>O [RE = Gd<sup>III</sup> (<b>1</b>), Tb<sup>III</sup> (<b>2</b>), Dy<sup>III</sup> (<b>3</b>), Ho<sup>III</sup> (<b>4</b>), Er<sup>III</sup> (<b>5</b>), Tm<sup>III</sup> (<b>6</b>), Yb<sup>III</sup> (<b>7</b>), Y<sup>III</sup> (<b>8</b>); Hpic
= 2-picolinic acid, dap = 1,2-diaminopropane] and dimers [H<sub>2</sub>dap]<sub>8</sub>Â[RE<sub>2</sub>(H<sub>2</sub>ox)<sub>2</sub>Â(ox)Â(α<sub>2</sub>-P<sub>2</sub>W<sub>17</sub>O<sub>61</sub>)<sub>2</sub>]·25H<sub>2</sub>O [RE = Ho<sup>III</sup> (<b>9</b>), Er<sup>III</sup> (<b>10</b>), Tm<sup>III</sup> (<b>11</b>), Yb<sup>III</sup> (<b>12</b>), Y<sup>III</sup> (<b>13</b>); H<sub>2</sub>ox = oxalic acid] have been hydrothermally
synthesized and characterized by elemental analyses, IR spectra, thermogravimetric
measurements, and X-ray single-crystal diffraction. The monomeric
polyoxoanion skeleton of isomorphic <b>1</b>–<b>8</b> is constructed from a monolacunary Dawson-type phosphotungstate
implanted by a [RE1Â(Hpic)<sub>2</sub>]<sup>3+</sup> cation in the
polar position and supported by the other [RE<sub>2</sub>(H<sub>2</sub>O)Â(Hpic)<sub>3</sub>]<sup>3+</sup> cation on the equatorial
belt. Interestingly, two kinds of RE cations separately coordinate
to two or three Hpic ligands in the form of N–C–C–O–RE
containing five-membered ring fashion. The dimeric polyoxoanion backbone
of isomorphic <b>9</b>–<b>13</b> is built by two
mono-RE substituted Dawson-type phosphotungstate fragments [REÂ(H<sub>2</sub>ox)Â(α<sub>2</sub>-P<sub>2</sub>W<sub>17</sub>O<sub>61</sub>)]<sup>7–</sup> joined together by an ox<sup>2–</sup> linker. The visible photoluminescence spectra of solid-state <b>2</b>, <b>3</b>, <b>5</b>, and <b>10</b> and
the NIR photoluminescence properties for solid-state <b>5</b>, <b>10</b>, <b>7</b>, and <b>12</b> at ambient
temperature have been carried out, which are mainly derived from the
RE<sup>3+</sup> f–f electron transitions. Magnetic susceptibility
measurements and fitting results of <b>3</b> demonstrate that <b>3</b> is a single-molecule magnet