18 research outputs found

    Two Tetra-Cd<sup>II</sup>-Substituted Vanadogermanate Frameworks

    No full text
    Two new tetra-Cd<sup>II</sup>-substituted vanadogermanate frameworks {(CdX)<sub>4</sub>Ge<sub>8</sub>­V<sup>IV</sup><sub>10</sub>O<sub>46</sub>(H<sub>2</sub>O)­[V<sup>III</sup>(H<sub>2</sub>O)<sub>2</sub>]<sub>4</sub>­(GeO<sub>2</sub>)<sub>4</sub>}·8H<sub>2</sub>O (X = ethylene­diamine (en, <b>1</b>) and 1,2-diamino­propane (dap, <b>2</b>)) were hydrothermally prepared and characterized by IR spectra, elemental analysis, powder X-ray diffraction (PXRD), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and X-ray single-crystal diffraction. Both are isomorphic, and their 3-D frameworks are made up of tetra-Cd<sup>II</sup>-substituted {(CdX)<sub>4</sub>Ge<sub>8</sub>­V<sup>IV</sup><sub>10</sub>O<sub>46</sub>­(H<sub>2</sub>O)}<sup>12–</sup> fundamental building units interconnected through planar tetra-V<sup>III</sup> [V<sup>III</sup><sub>4</sub>O<sub>2</sub>(H<sub>2</sub>O)<sub>8</sub>]<sup>8–</sup> clusters and tetrahedral GeO<sub>4</sub> bridges. In the unique {(CdX)<sub>4</sub>Ge<sub>8</sub>­V<sup>IV</sup><sub>10</sub>O<sub>46</sub>­(H<sub>2</sub>O)}<sup>12–</sup> cage, four [Ge<sub>2</sub>O<sub>7</sub>] dimers and four CdO<sub>4</sub>N<sub>2</sub> trigonal prisms are alternately concatenated by μ<sub>3</sub>-O bridges to create a round {Ge<sub>8</sub>Cd<sub>4</sub>O<sub>28</sub>(X)<sub>4</sub>}<sup>16–</sup> fragment, five VO<sub>5</sub> groups are linked by sharing edges to generate a pentanuclear [V<sub>5</sub>O<sub>17</sub>] subunit, and then the {Ge<sub>8</sub>Cd<sub>4</sub>O<sub>28</sub>(X)<sub>4</sub>}<sup>16–</sup> fragment is sandwiched by two V<sub>5</sub>O<sub>17</sub> subunits <i>via</i> sharing O-atoms producing a <i>D</i><sub>4<i>h</i></sub>-symmetric {(CdX)<sub>4</sub>Ge<sub>8</sub>­V<sup>IV</sup><sub>10</sub>O<sub>46</sub>­(H<sub>2</sub>O)}<sup>12–</sup> cage with a free water molecule located at the center. As we know, both display unprecedented 3-D organic–inorganic hybrid frameworks built up from the largest number of transition-metal-substituted vanadogermanate {(CdX)<sub>4</sub>Ge<sub>8</sub>V<sup>IV</sup><sub>10</sub>O<sub>46</sub>}<sup>12–</sup> cluster shells linked by both GeO<sub>4</sub> tetrahedra and rare [V<sup>III</sup><sub>4</sub>O<sub>2</sub>(H<sub>2</sub>O)<sub>8</sub>]<sup>8–</sup> clusters. Magnetic measurements reveal the antiferromagnetic couplings within the magnetic vanadium centers

    Two Tetra-Cd<sup>II</sup>-Substituted Vanadogermanate Frameworks

    No full text
    Two new tetra-Cd<sup>II</sup>-substituted vanadogermanate frameworks {(CdX)<sub>4</sub>Ge<sub>8</sub>­V<sup>IV</sup><sub>10</sub>O<sub>46</sub>(H<sub>2</sub>O)­[V<sup>III</sup>(H<sub>2</sub>O)<sub>2</sub>]<sub>4</sub>­(GeO<sub>2</sub>)<sub>4</sub>}·8H<sub>2</sub>O (X = ethylene­diamine (en, <b>1</b>) and 1,2-diamino­propane (dap, <b>2</b>)) were hydrothermally prepared and characterized by IR spectra, elemental analysis, powder X-ray diffraction (PXRD), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and X-ray single-crystal diffraction. Both are isomorphic, and their 3-D frameworks are made up of tetra-Cd<sup>II</sup>-substituted {(CdX)<sub>4</sub>Ge<sub>8</sub>­V<sup>IV</sup><sub>10</sub>O<sub>46</sub>­(H<sub>2</sub>O)}<sup>12–</sup> fundamental building units interconnected through planar tetra-V<sup>III</sup> [V<sup>III</sup><sub>4</sub>O<sub>2</sub>(H<sub>2</sub>O)<sub>8</sub>]<sup>8–</sup> clusters and tetrahedral GeO<sub>4</sub> bridges. In the unique {(CdX)<sub>4</sub>Ge<sub>8</sub>­V<sup>IV</sup><sub>10</sub>O<sub>46</sub>­(H<sub>2</sub>O)}<sup>12–</sup> cage, four [Ge<sub>2</sub>O<sub>7</sub>] dimers and four CdO<sub>4</sub>N<sub>2</sub> trigonal prisms are alternately concatenated by μ<sub>3</sub>-O bridges to create a round {Ge<sub>8</sub>Cd<sub>4</sub>O<sub>28</sub>(X)<sub>4</sub>}<sup>16–</sup> fragment, five VO<sub>5</sub> groups are linked by sharing edges to generate a pentanuclear [V<sub>5</sub>O<sub>17</sub>] subunit, and then the {Ge<sub>8</sub>Cd<sub>4</sub>O<sub>28</sub>(X)<sub>4</sub>}<sup>16–</sup> fragment is sandwiched by two V<sub>5</sub>O<sub>17</sub> subunits <i>via</i> sharing O-atoms producing a <i>D</i><sub>4<i>h</i></sub>-symmetric {(CdX)<sub>4</sub>Ge<sub>8</sub>­V<sup>IV</sup><sub>10</sub>O<sub>46</sub>­(H<sub>2</sub>O)}<sup>12–</sup> cage with a free water molecule located at the center. As we know, both display unprecedented 3-D organic–inorganic hybrid frameworks built up from the largest number of transition-metal-substituted vanadogermanate {(CdX)<sub>4</sub>Ge<sub>8</sub>V<sup>IV</sup><sub>10</sub>O<sub>46</sub>}<sup>12–</sup> cluster shells linked by both GeO<sub>4</sub> tetrahedra and rare [V<sup>III</sup><sub>4</sub>O<sub>2</sub>(H<sub>2</sub>O)<sub>8</sub>]<sup>8–</sup> clusters. Magnetic measurements reveal the antiferromagnetic couplings within the magnetic vanadium centers

    Two Tetra-Cd<sup>II</sup>-Substituted Vanadogermanate Frameworks

    No full text
    Two new tetra-Cd<sup>II</sup>-substituted vanadogermanate frameworks {(CdX)<sub>4</sub>Ge<sub>8</sub>­V<sup>IV</sup><sub>10</sub>O<sub>46</sub>(H<sub>2</sub>O)­[V<sup>III</sup>(H<sub>2</sub>O)<sub>2</sub>]<sub>4</sub>­(GeO<sub>2</sub>)<sub>4</sub>}·8H<sub>2</sub>O (X = ethylene­diamine (en, <b>1</b>) and 1,2-diamino­propane (dap, <b>2</b>)) were hydrothermally prepared and characterized by IR spectra, elemental analysis, powder X-ray diffraction (PXRD), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and X-ray single-crystal diffraction. Both are isomorphic, and their 3-D frameworks are made up of tetra-Cd<sup>II</sup>-substituted {(CdX)<sub>4</sub>Ge<sub>8</sub>­V<sup>IV</sup><sub>10</sub>O<sub>46</sub>­(H<sub>2</sub>O)}<sup>12–</sup> fundamental building units interconnected through planar tetra-V<sup>III</sup> [V<sup>III</sup><sub>4</sub>O<sub>2</sub>(H<sub>2</sub>O)<sub>8</sub>]<sup>8–</sup> clusters and tetrahedral GeO<sub>4</sub> bridges. In the unique {(CdX)<sub>4</sub>Ge<sub>8</sub>­V<sup>IV</sup><sub>10</sub>O<sub>46</sub>­(H<sub>2</sub>O)}<sup>12–</sup> cage, four [Ge<sub>2</sub>O<sub>7</sub>] dimers and four CdO<sub>4</sub>N<sub>2</sub> trigonal prisms are alternately concatenated by μ<sub>3</sub>-O bridges to create a round {Ge<sub>8</sub>Cd<sub>4</sub>O<sub>28</sub>(X)<sub>4</sub>}<sup>16–</sup> fragment, five VO<sub>5</sub> groups are linked by sharing edges to generate a pentanuclear [V<sub>5</sub>O<sub>17</sub>] subunit, and then the {Ge<sub>8</sub>Cd<sub>4</sub>O<sub>28</sub>(X)<sub>4</sub>}<sup>16–</sup> fragment is sandwiched by two V<sub>5</sub>O<sub>17</sub> subunits <i>via</i> sharing O-atoms producing a <i>D</i><sub>4<i>h</i></sub>-symmetric {(CdX)<sub>4</sub>Ge<sub>8</sub>­V<sup>IV</sup><sub>10</sub>O<sub>46</sub>­(H<sub>2</sub>O)}<sup>12–</sup> cage with a free water molecule located at the center. As we know, both display unprecedented 3-D organic–inorganic hybrid frameworks built up from the largest number of transition-metal-substituted vanadogermanate {(CdX)<sub>4</sub>Ge<sub>8</sub>V<sup>IV</sup><sub>10</sub>O<sub>46</sub>}<sup>12–</sup> cluster shells linked by both GeO<sub>4</sub> tetrahedra and rare [V<sup>III</sup><sub>4</sub>O<sub>2</sub>(H<sub>2</sub>O)<sub>8</sub>]<sup>8–</sup> clusters. Magnetic measurements reveal the antiferromagnetic couplings within the magnetic vanadium centers

    Novel Three-Dimensional Organic–Inorganic Heterometallic Hybrid Built by Sandwich-Type Tetra-Mn-Substituted Germanotungstates through Mixed 3d and 4f Metal Linkers

    No full text
    The reaction of trivacant Keegin germanotungstate [A-α-GeW<sub>9</sub>O<sub>34</sub>]<sup>10–</sup> with Mn<sup>2+</sup> and Ce<sup>4+</sup> cations in the presence of oxalate ligand under hydrothermal conditions led to the isolation of a novel organic–inorganic hybrid 3d–4f heterometallic germanotungstate K<sub>4</sub>Na<sub>4</sub>[Ce<sub>2</sub>(ox)<sub>3</sub>(H<sub>2</sub>O)<sub>2</sub>]<sub>2</sub>{[Mn(H<sub>2</sub>O)<sub>3</sub>]<sub>2</sub>[Mn<sub>4</sub>(GeW<sub>9</sub>O<sub>34</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]·14H<sub>2</sub>O (<b>1</b>) (ox = oxalate), which has been characterized by elemental analysis, IR spectroscopy, thermogravimetric (TG) analysis, and single-crystal X-ray crystallography. Interestingly, each tetra-Mn<sup>II</sup>-substituted sandwich-type unit acts as 14-dentate ligands to link eight Ce<sup>3+</sup> centers and six Mn<sup>2+</sup> centers further into a three-dimensional (3D) architecture. The 3D structure can be considered as two parts: one is the two-dimensional layer formed by sandwich-type [Mn<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>(GeW<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]<sup>12–</sup> fragments and Mn<sup>2+</sup> linkers; the other layer is constructed from Ce<sup>3+</sup> cations and oxalate bridges, and the two layers are combined together alternately through W–O–Ce–O–W linkers, resulting in the 3D framework. Notably, <b>1</b> exhibits the first 3d–4f 3D organic–inorganic hybrid framework constructed by sandwich-type TM-substituted polyoxoanions and mixed 3d and 4f metal linkers in POM chemistry

    Novel Three-Dimensional Organic–Inorganic Heterometallic Hybrid Built by Sandwich-Type Tetra-Mn-Substituted Germanotungstates through Mixed 3d and 4f Metal Linkers

    No full text
    The reaction of trivacant Keegin germanotungstate [A-α-GeW<sub>9</sub>O<sub>34</sub>]<sup>10–</sup> with Mn<sup>2+</sup> and Ce<sup>4+</sup> cations in the presence of oxalate ligand under hydrothermal conditions led to the isolation of a novel organic–inorganic hybrid 3d–4f heterometallic germanotungstate K<sub>4</sub>Na<sub>4</sub>[Ce<sub>2</sub>(ox)<sub>3</sub>(H<sub>2</sub>O)<sub>2</sub>]<sub>2</sub>{[Mn(H<sub>2</sub>O)<sub>3</sub>]<sub>2</sub>[Mn<sub>4</sub>(GeW<sub>9</sub>O<sub>34</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]·14H<sub>2</sub>O (<b>1</b>) (ox = oxalate), which has been characterized by elemental analysis, IR spectroscopy, thermogravimetric (TG) analysis, and single-crystal X-ray crystallography. Interestingly, each tetra-Mn<sup>II</sup>-substituted sandwich-type unit acts as 14-dentate ligands to link eight Ce<sup>3+</sup> centers and six Mn<sup>2+</sup> centers further into a three-dimensional (3D) architecture. The 3D structure can be considered as two parts: one is the two-dimensional layer formed by sandwich-type [Mn<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>(GeW<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]<sup>12–</sup> fragments and Mn<sup>2+</sup> linkers; the other layer is constructed from Ce<sup>3+</sup> cations and oxalate bridges, and the two layers are combined together alternately through W–O–Ce–O–W linkers, resulting in the 3D framework. Notably, <b>1</b> exhibits the first 3d–4f 3D organic–inorganic hybrid framework constructed by sandwich-type TM-substituted polyoxoanions and mixed 3d and 4f metal linkers in POM chemistry

    Synergistic Combination of Multi-Zr<sup>IV</sup> Cations and Lacunary Keggin Germanotungstates Leading to a Gigantic Zr<sub>24</sub>-Cluster-Substituted Polyoxometalate

    No full text
    Synergistic directing roles of six lacunary fragments resulted in an unprecedented Zr<sub>24</sub>-cluster substituted poly­(polyoxotungstate) Na<sub>10</sub>­K<sub>22</sub>­[Zr<sub>24</sub>­O<sub>22</sub>­(OH)<sub>10</sub>­(H<sub>2</sub>O)<sub>2</sub>­(W<sub>2</sub>­O<sub>10</sub>­H)<sub>2</sub>­(GeW<sub>9</sub>­O<sub>34</sub>)<sub>4</sub>­(GeW<sub>8</sub>­O<sub>31</sub>)<sub>2</sub>]·85H<sub>2</sub>O (Na<sub>10</sub>K<sub>22</sub>·<b>1</b>·85H<sub>2</sub>O), which contains the largest [Zr<sub>24</sub>O<sub>22</sub>(OH)<sub>10</sub>(H<sub>2</sub>O)<sub>2</sub>] (Zr<sub>24</sub>) cluster in all the Zr-based poly­(polyoxometalate)­s to date. The most remarkable feature is that the centrosymmetric Zr<sub>24</sub>-cluster-based hexamer contains two symmetry-related [Zr<sub>12</sub>­O<sub>11</sub>­(OH)<sub>5</sub>­(H<sub>2</sub>­O)­(W<sub>2</sub>­O<sub>10</sub>H)­(GeW<sub>9</sub>­O<sub>34</sub>)<sub>2</sub>­(GeW<sub>8</sub>­O<sub>31</sub>)]<sup>16–</sup> trimers via six μ<sub>3</sub>-oxo bridges and was simultaneously trapped by three types of different segments of <i>B</i>-α-GeW<sub>9</sub>O<sub>34</sub>, <i>B</i>-α-GeW<sub>8</sub>O<sub>31</sub>, and W<sub>2</sub>O<sub>10</sub>. The other interesting characteristic is that there are two pairs of intriguing triangular atom alignments: one is composed of the Zr­(2,4,6,8,11) and W21 atoms and the other contains the Ge(1–3), Zr­(3,5,7,9,10,12) and W26 atoms, and the Zr5 atom is inside the triangle; a linking mode is unobserved. The oxygenation reactions of thioethers by H<sub>2</sub>O<sub>2</sub> were evaluated when Na<sub>10</sub>K<sub>22</sub>·<b>1</b>·85H<sub>2</sub>O served as a catalyst. Results show that it is an effective catalyst for oxygenation of thioethers by H<sub>2</sub>O<sub>2</sub>. The unique redox property of oxygen-enriched polyoxotungstate fragments and Lewis acidity of the Zr cluster imbedded in Na<sub>10</sub>K<sub>22</sub>·<b>1</b>·85H<sub>2</sub>O provide a sufficient driving force for the catalytic conversion from thioethers to sulfoxides/sulfones

    First Tungstoantimonate-Based Transition-Metal–Lanthanide Heterometallic Hybrids Functionalized by Amino Acid Ligands

    No full text
    By the routine aqueous solution method, a series of transition-metal–lanthanide heterometallic tungstoantimonates [Ln­(H<sub>2</sub>O)<sub>8</sub>]<sub>2</sub>­[Fe<sub>4</sub>(H<sub>2</sub>O)<sub>8</sub>(thr)<sub>2</sub>]­[B-β-SbW<sub>9</sub>O<sub>33</sub>]<sub>2</sub>·22H<sub>2</sub>O [Ln = Pr<sup>III</sup> (<b>1</b>), Nd<sup>III</sup> (<b>2</b>), Sm<sup>III</sup> (<b>3</b>), Eu<sup>III</sup> (<b>4</b>), Gd<sup>III</sup> (<b>5</b>), Dy<sup>III</sup> (<b>6</b>), Lu<sup>III</sup> (<b>7</b>), thr = threonine] were prepared and structurally characterized by multiple testing techniques. The common structural characteristic of <b>1</b>–<b>7</b> is that they are isomorphous and all consist of a [Fe<sub>4</sub>(H<sub>2</sub>O)<sub>8</sub>(thr)<sub>2</sub>­(B-β-SbW<sub>9</sub>O<sub>33</sub>)<sub>2</sub>]<sup>6–</sup> subunit with two supporting [Ln­(H<sub>2</sub>O)<sub>8</sub>]<sup>3+</sup> cations on both sides. It should be pointed out that two thr ligands in the [Fe<sub>4</sub>(H<sub>2</sub>O)<sub>8</sub>(thr)<sub>2</sub>­(B-β-SbW<sub>9</sub>O<sub>33</sub>)<sub>2</sub>]<sup>6–</sup> subunit substitute for two water ligands in the classical [Fe<sub>4</sub>(H<sub>2</sub>O)<sub>10</sub>­(B-β-SbW<sub>9</sub>O<sub>33</sub>)<sub>2</sub>]<sup>6–</sup> polyoxoanion. As far as we know, <b>1</b>–<b>7</b> represents the first organic–inorganic tungstoantimonate hybrids consisting of transition metal and lanthanide cations and amino acid components. The fluorescence behavior of <b>4</b> has been measured and manifests the remarkable fluorescence feature resulting from the emission signature of Eu<sup>III</sup> cations. Furthermore, the solid-state electrochemistry and electrocatalytic performances of <b>1</b> have been measured in 0.5 mol L<sup>–1</sup> Na<sub>2</sub>SO<sub>4</sub>+H<sub>2</sub>SO<sub>4</sub> aqueous solution, and the results show that <b>1</b> illustrates comparatively apparent catalytic activities toward the BrO<sub>3</sub><sup>–</sup> and H<sub>2</sub>O<sub>2</sub> reduction. The magnetic properties of <b>3</b> and <b>6</b> have been studied

    Synergistic Combination of Multi-Zr<sup>IV</sup> Cations and Lacunary Keggin Germanotungstates Leading to a Gigantic Zr<sub>24</sub>-Cluster-Substituted Polyoxometalate

    No full text
    Synergistic directing roles of six lacunary fragments resulted in an unprecedented Zr<sub>24</sub>-cluster substituted poly­(polyoxotungstate) Na<sub>10</sub>­K<sub>22</sub>­[Zr<sub>24</sub>­O<sub>22</sub>­(OH)<sub>10</sub>­(H<sub>2</sub>O)<sub>2</sub>­(W<sub>2</sub>­O<sub>10</sub>­H)<sub>2</sub>­(GeW<sub>9</sub>­O<sub>34</sub>)<sub>4</sub>­(GeW<sub>8</sub>­O<sub>31</sub>)<sub>2</sub>]·85H<sub>2</sub>O (Na<sub>10</sub>K<sub>22</sub>·<b>1</b>·85H<sub>2</sub>O), which contains the largest [Zr<sub>24</sub>O<sub>22</sub>(OH)<sub>10</sub>(H<sub>2</sub>O)<sub>2</sub>] (Zr<sub>24</sub>) cluster in all the Zr-based poly­(polyoxometalate)­s to date. The most remarkable feature is that the centrosymmetric Zr<sub>24</sub>-cluster-based hexamer contains two symmetry-related [Zr<sub>12</sub>­O<sub>11</sub>­(OH)<sub>5</sub>­(H<sub>2</sub>­O)­(W<sub>2</sub>­O<sub>10</sub>H)­(GeW<sub>9</sub>­O<sub>34</sub>)<sub>2</sub>­(GeW<sub>8</sub>­O<sub>31</sub>)]<sup>16–</sup> trimers via six μ<sub>3</sub>-oxo bridges and was simultaneously trapped by three types of different segments of <i>B</i>-α-GeW<sub>9</sub>O<sub>34</sub>, <i>B</i>-α-GeW<sub>8</sub>O<sub>31</sub>, and W<sub>2</sub>O<sub>10</sub>. The other interesting characteristic is that there are two pairs of intriguing triangular atom alignments: one is composed of the Zr­(2,4,6,8,11) and W21 atoms and the other contains the Ge(1–3), Zr­(3,5,7,9,10,12) and W26 atoms, and the Zr5 atom is inside the triangle; a linking mode is unobserved. The oxygenation reactions of thioethers by H<sub>2</sub>O<sub>2</sub> were evaluated when Na<sub>10</sub>K<sub>22</sub>·<b>1</b>·85H<sub>2</sub>O served as a catalyst. Results show that it is an effective catalyst for oxygenation of thioethers by H<sub>2</sub>O<sub>2</sub>. The unique redox property of oxygen-enriched polyoxotungstate fragments and Lewis acidity of the Zr cluster imbedded in Na<sub>10</sub>K<sub>22</sub>·<b>1</b>·85H<sub>2</sub>O provide a sufficient driving force for the catalytic conversion from thioethers to sulfoxides/sulfones

    Novel One-Dimensional Organic–Inorganic Polyoxometalate Hybrids Constructed from Heteropolymolybdate Units and Copper–Aminoacid Complexes

    No full text
    Two unique organic–inorganic hybrid heteropolymolybdates with copper–aminoacid complexes [Cu­(arg)<sub>2</sub>]<sub>2</sub>[(CuO<sub>6</sub>)­Mo<sub>6</sub>O<sub>18</sub>(As<sub>3</sub>O<sub>3</sub>)<sub>2</sub>]·4 H<sub>2</sub>O (<b>1</b>) and [Cu­(arg)<sub>2</sub>]<sub>3</sub>[TeMo<sub>6</sub>O<sub>24</sub>]·8H<sub>2</sub>O (<b>2</b>) (arg = l-arginine) have been prepared under the 110 °C hydrothermal environments and structurally characterized by elemental analyses, IR spectra, thermogravimetric (TG) analyses, and single-crystal X-ray diffraction. <b>1</b> stands for the first one-dimensional (1D) chain organic–inorganic hybrid arsenomolybdate constructed from lantern-shaped [(CuO<sub>6</sub>)­Mo<sub>6</sub>O<sub>18</sub>(As<sub>3</sub>O<sub>3</sub>)<sub>2</sub>]<sup>4–</sup> units through dinuclear [Cu<sub>2</sub>(arg)<sub>4</sub>]<sup>4+</sup> connectors, whereas <b>2</b> represents an unprecedented 1D chain organic–inorganic hybrid telluromolybdate built by Anderson-type [TeMo<sub>6</sub>O<sub>24</sub>]<sup>6–</sup> fragments via trinuclear [Cu<sub>3</sub>(arg)<sub>6</sub>]<sup>6+</sup> bridges. Variable-temperature magnetic susceptibilities of <b>1</b> and <b>2</b> have been investigated and both illustrate the weak antiferromagnetic coupling within copper centers mediated by the carboxyl groups of arg ligands. Moreover, the solid-state electrochemical and electrocatalytic properties of <b>1</b> have been carried out in 1 mol L<sup>–1</sup> H<sub>2</sub>SO<sub>4</sub> aqueous solution by entrapping it in a carbon paste electrode. <b>1</b> displays apparent electrocatalytic activities toward the reduction of nitrite and bromate

    Two Families of Rare-Earth-Substituted Dawson-type Monomeric and Dimeric Phosphotungstates Functionalized by Carboxylic Ligands

    No full text
    Two series of novel organic–inorganic hybrid carboxylated rare-earth-substituted monolacunary Dawson-type phosphotungstate monomers [Hdap]<sub>4</sub>­[RE­(H<sub>2</sub>O)­(Hpic)<sub>3</sub>]­[RE­(Hpic)<sub>2</sub> (α<sub>2</sub>-P<sub>2</sub>W<sub>17</sub>O<sub>61</sub>)]­·21H<sub>2</sub>O [RE = Gd<sup>III</sup> (<b>1</b>), Tb<sup>III</sup> (<b>2</b>), Dy<sup>III</sup> (<b>3</b>), Ho<sup>III</sup> (<b>4</b>), Er<sup>III</sup> (<b>5</b>), Tm<sup>III</sup> (<b>6</b>), Yb<sup>III</sup> (<b>7</b>), Y<sup>III</sup> (<b>8</b>); Hpic = 2-picolinic acid, dap = 1,2-diaminopropane] and dimers [H<sub>2</sub>dap]<sub>8</sub>­[RE<sub>2</sub>(H<sub>2</sub>ox)<sub>2</sub>­(ox)­(α<sub>2</sub>-P<sub>2</sub>W<sub>17</sub>O<sub>61</sub>)<sub>2</sub>]­·25H<sub>2</sub>O [RE = Ho<sup>III</sup> (<b>9</b>), Er<sup>III</sup> (<b>10</b>), Tm<sup>III</sup> (<b>11</b>), Yb<sup>III</sup> (<b>12</b>), Y<sup>III</sup> (<b>13</b>); H<sub>2</sub>ox = oxalic acid] have been hydrothermally synthesized and characterized by elemental analyses, IR spectra, thermogravimetric measurements, and X-ray single-crystal diffraction. The monomeric polyoxoanion skeleton of isomorphic <b>1</b>–<b>8</b> is constructed from a monolacunary Dawson-type phosphotungstate implanted by a [RE1­(Hpic)<sub>2</sub>]<sup>3+</sup> cation in the polar position and supported by the other [RE<sub>2</sub>(H<sub>2</sub>O)­(Hpic)<sub>3</sub>]<sup>3+</sup> cation on the equatorial belt. Interestingly, two kinds of RE cations separately coordinate to two or three Hpic ligands in the form of N–C–C–O–RE containing five-membered ring fashion. The dimeric polyoxoanion backbone of isomorphic <b>9</b>–<b>13</b> is built by two mono-RE substituted Dawson-type phosphotungstate fragments [RE­(H<sub>2</sub>ox)­(α<sub>2</sub>-P<sub>2</sub>W<sub>17</sub>O<sub>61</sub>)]<sup>7–</sup> joined together by an ox<sup>2–</sup> linker. The visible photoluminescence spectra of solid-state <b>2</b>, <b>3</b>, <b>5</b>, and <b>10</b> and the NIR photoluminescence properties for solid-state <b>5</b>, <b>10</b>, <b>7</b>, and <b>12</b> at ambient temperature have been carried out, which are mainly derived from the RE<sup>3+</sup> f–f electron transitions. Magnetic susceptibility measurements and fitting results of <b>3</b> demonstrate that <b>3</b> is a single-molecule magnet
    corecore