157 research outputs found

    Growth control by EGF repeats of the C. elegans Fibulin-1C isoform

    Get PDF
    Fibulin is a broadly conserved component of the extracellular matrix (ECM). Previous studies have shown that Caenorhabditis elegans FIBULIN-1 (FBL-1) controls the width of the gonad (Hesselson, D., C. Newman, K.W. Kim, and J. Kimble. 2004. Curr. Biol. 14:2005–2010; Kubota, Y., R. Kuroki, and K. Nishiwaki. 2004. Curr. Biol. 14:2011–2018; Muriel, J.M., C. Dong, H. Hutter, and B.E. Vogel. 2005. Development. 132: 4223–4234). In this study, we report that FBL-1 also controls developmental growth and that one isoform of fibulin-1, called FBL-1C, controls both functions by distinct mechanisms. A large FBL-1C fragment, including both epidermal growth factor (EGF) and fibulin-type C domains, is responsible for constraining gonadal width, but a much smaller fragment containing only two complete EGF repeats (EGF1-2C+) is critical for developmental growth. We suggest that the larger fragment serves a scaffolding function to stabilize the basement membrane and that the smaller fragment provides a regulatory function at the cell surface or within the ECM to control growth

    Genetics of intercellular signalling in C. elegans

    Get PDF
    Cell-cell interactions play a significant role in controlling cell fate during development of the nematode Caenorhabditis elegans. It has been found that two genes, glp-1 and lin-12, are required for many of these decisions. glp-1 is required for induction of mitotic proliferation in the germline by the somatic distal tip cell and for induction of the anterior pharynx early in embryogenesis. lin-12 is required for the interactions between cells of equivalent developmental potential, which allow them to take on different fates. Comparison of these two genes on a molecular level indicates that they are similar in sequence and organization, suggesting that the mechanisms of these two different sets of cell-cell interactions are similar

    Identification of Genes That Interact with glp-1, a Gene Required for Inductive Cell Interactions in Caenorhabditis elegans

    Get PDF
    The glp-1 gene functions in two inductive cellular interactions and in development of the embryonic hypodermis of C. elegans. We have isolated six mutations as recessive suppressors of temperature-sensitive (ts) mutations of glp-1. By mapping and complementation tests, we found that these suppressors are mutations of known dumpy (dpy) genes; dpy genes are required for development of normal body shape. Based on this result, we asked whether mutations previously isolated in screens for mutants defective in body shape could also suppress glp-1(ts). From these tests, we learned that unselected mutations of eight genes required for normal C. elegans morphogenesis, including the four already identified, suppress glp-1(ts). All of these suppressors rescue all three mutant phenotypes of glp-1(ts) (defects in embryonic induction of pharyngeal tissue, in embryonic hypodermis development, and in induction of germline proliferation). However, they do not rescue putative glp-1 null mutants and therefore do not bypass the requirement for glp-1 in development. In the light of current ideas about the molecular nature of the glp-1 and suppressor gene products, we propose an interaction between the glp-1 protein and components of the extracellular matrix and speculate that this interaction may impose spatial constraints on the decision between mitosis and meiosis in the germline

    Molecular Basis of Loss-of-Function Mutations in the glp-1 Gene of Caenorhabitis elegans

    Get PDF
    The glp-1 gene encodes a membrane protein required for inductive cell interactions during development of the nematode Caenorhabditis elegans. Here we report the molecular characterization of 15 loss-of-function (lf) mutations of glp-1. Two nonsense mutations appear to eliminate glp-1 activity; both truncate the glp-1 protein in its extracellular domain and have a strong loss-of-function phenotype. Twelve missense mutations and one in-frame deletion map to sites within the repeated motifs of the glp-1 protein (10 epidermal growth factor [EFG]-like and 3 LNG repeats extracellularly and 6 cdc10/SW16, or ankyrin, repeats intracellularly). We find that all three types of repeated motifs are critical to glp-1 function, and two individual EFG-like repeats may have distinct functions. Intriguingly, all four missense mutations in one phenotypic class map to the N-terminal EGF-like repeats and all six missense mutations in a second phenotypic class reside in the intracellular cdc10/SW16 repeats. These two clusters of mutations may identify functional domains within the glp-1 protein

    ISER monograph, no. 1

    Get PDF
    The original Introduction to the thesis, in summary, developed three main themes (a) a close analysis of the institutional arrangements of the pre-capitalist mode of production, demonstrating its complexity; (b) a broader perspective on the legal, political, social and economic aspects of colonialism; and (c) an account of the distinctive patterns of migrant labour which resulted. First. Judy examined the cheap labour hypothesis of Wolpe (1972), which identified the policy of Segregation as ‘the key mechanism in the subcontinent for the forcible generation and reproduction of labour power on a scale and at a price required by foreign mining capital'. Although she found this a major advance from earlier views of migrant labour as simply a system whereby "men oscillate between their home in some rural area and their place of work’ (Francis Wilson, 1972b), she criticised Wolpe’s hypothesis for failing to incorporate an adequate analysis of ‘the internal forces promoting labour migrancy in Basutoland under colonial rule’, to which she paid particular attention. She did not regard migrant labour solely as ‘The outcome of ruling class policy or ruling class intention’ (Brenner, 1977:78). Nor does she accept Wolpe’s assumption that the migrant labour system was an intended effect of the strategy of mining capital; this reduced "the variety of complex historical factors’ to "the driving force of “the needs of capital”. She therefore offered ‘a more extended exploration of the political dimension of colonial rule’ and a more complex analysis of mining capital and its relationship with pre-capitalist social formations.Digitised by Rhodes University Library on behalf of the Institute of Social and Economic Research (ISER

    The PHA-4 Gene is Required to Generate the Pharyngeal Primordium of Caenorhabditis-Elegans

    Get PDF
    In the 4-cell Caenorhabditis elegans embryo, two blastomeres are destined to generate pharyngeal cells, each by a distinct developmental strategy: one pathway is inductive, while the other is autonomous. Here, we identify the pha-4 locus. In animals lacking pha-4 activity, an early step in pharyngeal organogenesis is blocked: no pharyngeal primordium is formed and differentiated pharyngeal cells are absent. Most other tissues are generated normally in pha-4 mutants, including cells related to pharyngeal cells by cell lineage and position. Thus, pha-4 activity is required to form the pharyngeal primordium. We propose that pha-4 marks a convergence of the inductive and autonomous pathways of pharyngeal development and suggest that establishment of pharyngeal organ identity is a crucial step for pharyngeal organogenesis

    LAG-2 may Encode a Signaling Ligand for the GLP-1 and LIN-12 Receptors of C-Elegans

    Get PDF
    The C. elegans lag-2 gene is required for several cell-cell interactions that rely on the receptors GLP-1 and LIN-12. In this paper, we report that lag-2 encodes a putative membrane protein with sequence similarity to Drosophila Delta, a proposed ligand for the Notch receptor. Furthermore, we show that the lag-2 promoter drives expression of a reporter protein in the signaling distal tip cell (DTC) of the DTC/germline interaction. By in situ hybridization, we have found that endogenous lag-2 mRNA is present in the DTC but not the germ line. One fusion protein, called LAG-2::beta-gal(intra), rescues a lag-2 null mutant and can be detected in both DTC and germ line. Taking these results together, we propose that lag-2 may encode a signaling ligand for GLP-1/LIN-12 and that the entire LAG-2 protein may be taken up into the receiving cell during induction by GLP-1 and lateral signaling by LIN-12

    Suppressors of glp-1, a Gene Required for Cell Communication During Development in Caenorhabditis elegans, Define a Set of Interacting Genes

    Get PDF
    The glp-1 gene is essential for two cell interactions that control cell fate in Caenorhabditis elegans: induction of anterior pharynx in the embryo and induction of mitotic proliferation in the germ line. To identify other genes involved in these cell interactions, we have isolated suppressors of two temperature sensitive alleles of glp-1. Each of 14 recessive suppressors rescues both embryonic and germline glp-1(ts) defects. These suppressors are extragenic and define a set of six genes designated sog, for suppressor of glp-1. Suppression of glp-1 is the only obvious phenotype associated with sog mutations. Mutations in different sog genes show allele-specific intergenic noncomplementation, suggesting that the sog gene products may interact. In addition, we have analyzed a semidominant mutation that suppresses only the glp-1 germline phenotype and has a conditional feminized phenotype of its own. None of the suppressors rescues a glp-1 null mutation and therefore they do not bypass a requirement for glp-1. Distal tip cell function remains necessary for germline proliferation in suppressed animals. These suppressor mutations identify genes that may encode other components of the glp-1 mediated cell-signaling pathway or regulate glp-1 expression

    The gon-1 Gene Is Required for Gonadal Morphogenesis in Caenorhabditis elegans

    Get PDF
    AbstractIn wild-type Caenorhabditis elegans, the gonad is a complex epithelial tube that consists of long arms composed predominantly of germline tissue as well as somatic structures specialized for particular reproductive functions. In gon-1 mutants, the adult gonad is severely disorganized with essentially no arm extension and no recognizable somatic structure. The developmental defects in gon-1 mutants are limited to the gonad; other cells, tissues, and organs appear to develop normally. Previous work defined the regulatory “leader” cells as crucial for extension of the gonadal arms (J. E. Kimble and J. G. White, 1981, Dev. Biol. 81, 208–219). In gon-1 mutants, the leader cells are specified correctly, but they fail to migrate and gonadal arms are not generated. In addition, gon-1 is required for morphogenesis of the gonadal somatic structures. This second role appears to be independent of that required for leader migration. Parallel studies have shown that gon-1 encodes a secreted metalloprotease (R. Blelloch and J. Kimble, 1999, Nature 399, 586–590). We discuss how a metalloprotease may control two aspects of gonadal morphogenesis

    Germ-line induction of the Caenorhabditis elegans vulva

    Get PDF
    Development of th
    corecore