8,125 research outputs found

    HI and Cosmology: What We Need To Know

    Get PDF
    There are three distinct regimes in which radio observations of the redshifted 21 cm line of HI can contribute directly to cosmology in unique ways. The regimes are naturally divided by redshift, from high to low, into: inflationary physics, the Dark Ages and reionization, and galaxy evolution and Dark Energy. Each measurement presents its own set of technical, theoretical, and observational challenges, making "what we need to know" not so much an astrophysical question at this early stage as a comprehensive experimental question. A wave of new pathfinder projects are exploring the fundamental aspects of what we need to know (and what we should expect to learn in the coming years) in order to achieve the goals of the Square Kilometer Array (SKA) and beyond.Comment: From AIP Conference Proceedings, Volume 1035, 2008, "The Evolution of Galaxies through the Neutral Hydrogen Window". 7 page

    Occlusion-Robust MVO: Multimotion Estimation Through Occlusion Via Motion Closure

    Full text link
    Visual motion estimation is an integral and well-studied challenge in autonomous navigation. Recent work has focused on addressing multimotion estimation, which is especially challenging in highly dynamic environments. Such environments not only comprise multiple, complex motions but also tend to exhibit significant occlusion. Previous work in object tracking focuses on maintaining the integrity of object tracks but usually relies on specific appearance-based descriptors or constrained motion models. These approaches are very effective in specific applications but do not generalize to the full multimotion estimation problem. This paper presents a pipeline for estimating multiple motions, including the camera egomotion, in the presence of occlusions. This approach uses an expressive motion prior to estimate the SE (3) trajectory of every motion in the scene, even during temporary occlusions, and identify the reappearance of motions through motion closure. The performance of this occlusion-robust multimotion visual odometry (MVO) pipeline is evaluated on real-world data and the Oxford Multimotion Dataset.Comment: To appear at the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). An earlier version of this work first appeared at the Long-term Human Motion Planning Workshop (ICRA 2019). 8 pages, 5 figures. Video available at https://www.youtube.com/watch?v=o_N71AA6FR

    Data management of on-line partial discharge monitoring using wireless sensor nodes integrated with a multi-agent system

    Get PDF
    On-line partial discharge monitoring has been the subject of significant research in previous years but little work has been carried out with regard to the management of on-site data. To date, on-line partial discharge monitoring within a substation has only been concerned with single plant items, so the data management problem has been minimal. As the age of plant equipment increases, so does the need for condition monitoring to ensure maximum lifespan. This paper presents an approach to the management of partial discharge data through the use of embedded monitoring techniques running on wireless sensor nodes. This method is illustrated by a case study on partial discharge monitoring data from an ageing HVDC reactor

    Implications of non-feasible transformations among icosahedral hh orbitals

    Get PDF
    The symmetric group S6S_6 that permutes the six five-fold axes of an icosahedron is introduced to go beyond the simple rotations that constitute the icosahedral group II. Owing to the correspondence hdh\leftrightarrow d, the calculation of the Coulomb energies for the icosahedral configurations hNh^N based on the sequence O(5)S6S5IO(5) \supset S_6 \supset S_5 \supset I can be brought to bear on Racah's classic theory for the atomic d shell based on SO(5)SOL(3)ISO(5) \supset SO_L(3) \supset I. Among the elements of S6S_6 is the kaleidoscope operator K{\cal K} that rotates the weight space of SO(5) by π/2\pi/2. Its use explains some puzzling degeneracies in d^3 involving the spectroscopic terms ^2P, ^2F, ^2G and ^2H.Comment: Tentatively scheduled to appear in Physical Preview Letters Apr 5, 99. Revtex, 1 ps figur

    Identifying prognostic indicators for electrical treeing in solid insulation through pulse sequence analysis

    Get PDF
    Predictive maintenance attempts to evaluate the condition of equipment and predict the future trend of the equipment's aging, in order to reduce costs when compared to the two traditional approaches: corrective and preventive maintenance. This prediction requires an accurate prognostic model of aging. In solid insulation, the ultimate goal of prognostics is to predict the advent of failure, i.e., insulation breakdown, in terms of remaining useful life (RUL). One fault is electrical treeing, which is progressive thus leading to potentially catastrophic failure. Research has shown that diagnosis of faults can be achieved based on partial discharge (PD) monitoring [1], i.e., phase-resolved and pulse sequence analysis (PSA). This work will explore the extension of this concept towards predicting evolution of the defect: moving beyond diagnostics towards prognostics. To do this, there is a need for further investigation of prognostic features within PD characteristics leading up to breakdown. In this work, a needle-plane test arrangement was set up using a hypodermic needle and pre-formed silicone rubber as test samples. The visual observations and tree growth measurements were made using a digital microscope. PD data was captured using a radio frequency (RF) sensor and analysed using PSA. The main idea of the PSA approach is the strong relationship between two consecutive pulses caused by PD activities, which can give an understanding of the local degradation processes [1]. As for electrical treeing, a breakdown indicator in PSA is the appearance of heavily clustered data points that lie diagonally in scatter plots of the differential ratio of voltage and time of consecutive charges (Un = Δun/Δtn) [2,3]. Figure 1 shows an example of a plot that changed to a diagonal line after 14 hours of aging time. This paper investigates the formation of the diagonal line based on the distribution of the plot from the start of electrical treeing until breakdown occurs. Finally, statistical features of the PSA plot are given and will be used for lifetime prediction of insulation samples in future work

    Acidified and ultrafiltered recovered coagulants from water treatment works sludge for removal of phosphorus from wastewater

    Get PDF
    This study used a range of treated water treatment works sludge options for the removal of phosphorus (P) from primary wastewater. These options included the application of ultrafiltration for recovery of the coagulant from the sludge. The treatment performance and whole life cost (WLC) of the various recovered coagulant (RC) configurations have been considered in relation to fresh ferric sulphate (FFS). Pre-treatment of the sludge with acid followed by removal of organic and particulate contaminants using a 2kD ultrafiltration membrane resulted in a reusable coagulant that closely matched the performance FFS. Unacidified RC showed 53% of the phosphorus removal efficiency of FFS, at a dose of 20 mg/L as Fe and a contact time of 90 min. A longer contact time of 8 h improved performance to 85% of FFS. P removal at the shorter contact time improved to 88% relative to FFS by pre-acidifying the sludge to pH 2, using an acid molar ratio of 5.2:1 mol H+:Fe. Analysis of the removal of P showed that rapid phosphate precipitation accounted for >65% of removal with FFS. However, for the acidified RC a slower adsorption mechanism dominated; this was accelerated at a lower pH. A cost-benefit analysis showed that relative to dosing FFS and disposing waterworks sludge to land, the 20 year WLC was halved by transporting acidified or unacidified sludge up to 80 km for reuse in wastewater treatment. A maximum inter-site distance was determined to be 240 km above the current disposal route at current prices. Further savings could be made if longer contact times were available to allow greater P removal with unacidified RC

    Reuse of recovered coagulants in water treatment: An investigation on the effect coagulant purity has on treatment performance

    Get PDF
    Coagulant recovery offers many potential benefits to water treatment, by reducing chemical demand and waste production. The key obstacle to successful implementation is achieving the same levels of treatment quality and process economics as commercial coagulants. This study has evaluated the selectivity of pressure-filtration in the role of a low-cost coagulant recovery technology from waterworks sludge. The treatment performance of the purified recovered coagulant was directly compared to fresh and raw recovered coagulants. DOC and turbidity removal by recovered coagulants was close to that of commercial coagulants, indicating that coagulant can be successfully recovered and regenerated by acidifying waterworks sludge. However, performance was less consistent, with a much narrower optimum charge neutralisation window and 10–30% worse removal performance under optimum conditions. This inferior performance was particularly evident for recovered ferric coagulants. The impact of this was confirmed by measuring THM formation potential and residual metals concentrations, showing 30–300% higher THMFPs when recovered coagulants were used. This study confirms that pressure-filtration can be operated on an economically viable basis, in terms of mass flux and fouling. However, the selectivity currently falls short of the purity required for potable treatment, due to incomplete rejection of sludge contaminants
    corecore