4 research outputs found

    Evaluation of Sulfonium Borate Initiators for Cationic Photopolymerization and Their Application in Hot Lithography

    No full text
    Sulfonium hexafluorophosphates and perfluorinated tetraphenylborates are well established initiators in the field of cationic photopolymerization and have already been applied in 3D-printing at elevated temperatures, named hot lithography. The cyanide-ligated borane-based photoinitiator B2 shows lower molecular weight compared to state-of-the-art borates and is less expensive to synthesize from commercial starting materials. By comparing reactivity in the epoxy monomer BADGE, B2 outperforms commercial initiators in a broad range of temperatures with outstanding epoxy group conversions of up to 99%. Besides B2’s excellent performance as a cationic initiator, formulations containing B2 are thermally and storage stable and can be sensitized by anthracene derivatives. Hot lithography of B2 was carried out successfully at 90 °C and compared to existing sulfonium initiators. Layer quality and coloration of the fabricated and postcured parts are superior for B2. Overall, the cyanide-ligated sulfonium salt B2 represents an excellent initiator for cationic photopolymerization and application in hot lithography

    Laser Photofabrication of Cell-Containing Hydrogel Constructs

    No full text
    The two-photon polymerization (2PP) of photosensitive gelatin in the presence of living cells is reported. The 2PP technique is based on the localized cross-linking of photopolymers induced by femtosecond laser pulses. The availability of water-soluble photoinitiators (PI) suitable for 2PP is crucial for applying this method to cell-containing materials. Novel PIs developed by our group allow 2PP of formulations with up to 80% cell culture medium. The cytocompatibility of these PIs was evaluated by an MTT assay. The results of cell encapsulation by 2PP show the occurrence of cell damage within the laser-exposed regions. However, some cells located in the immediate vicinity and even within the 2PP-produced structures remain viable and can further proliferate. The control experiments demonstrate that the laser radiation itself does not damage the cells at the parameters used for 2PP. On the basis of these findings and the reports by other groups, we conclude that such localized cell damage is of a chemical origin and can be attributed to reactive species generated during 2PP. The viable cells trapped within the 2PP structures but not exposed to laser radiation continued to proliferate. The live/dead staining after 3 weeks revealed viable cells occupying most of the space available within the 3D hydrogel constructs. While some of the questions raised by this study remain open, the presented results indicate the general practicability of 2PP for 3D processing of cell-containing materials. The potential applications of this highly versatile approach span from precise engineering of 3D tissue models to the fabrication of cellular microarrays

    A Straightforward Synthesis and Structure–Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization

    No full text
    The development of practical two-photon absorption photoinitiators (TPA PIs) has been slow due to their complicated syntheses often reliant on expensive catalysts. These shortcomings have been a critical obstruction for further advances in the promising field of two-photon-induced photopolymerization (TPIP) technology. This paper describes a series of linear and cyclic benzylidene ketone-based two-photon initiators containing double bonds and dialkylamino groups synthesized in one step via classical aldol condensation reactions. Systematic investigations of structure–activity relationships were conducted via quantum-chemical calculations and experimental tests. These results showed that the size of the central ring significantly affected the excited state energetics and emission quantum yields as well as the two-photon initiation efficiency. In the TPIP tests the 4-methylcyclohexanone-based initiator displayed much broader ideal processing windows than its counterparts with a central five-membered ring and previously described highly active TPA PIs. Surprisingly, a writing speed as high as 80 mm/s was obtained for the microfabrication of complex 3D structures employing acrylate-based formulations. These highly active TPA PIs also exhibit excellent thermal stability and remain inert to one-photon excitation. Straightforward synthesis combined with high TPA initiation efficiency makes these novel initiators promising candidates for commercialization

    A Straightforward Synthesis and Structure–Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization

    No full text
    The development of practical two-photon absorption photoinitiators (TPA PIs) has been slow due to their complicated syntheses often reliant on expensive catalysts. These shortcomings have been a critical obstruction for further advances in the promising field of two-photon-induced photopolymerization (TPIP) technology. This paper describes a series of linear and cyclic benzylidene ketone-based two-photon initiators containing double bonds and dialkylamino groups synthesized in one step via classical aldol condensation reactions. Systematic investigations of structure–activity relationships were conducted via quantum-chemical calculations and experimental tests. These results showed that the size of the central ring significantly affected the excited state energetics and emission quantum yields as well as the two-photon initiation efficiency. In the TPIP tests the 4-methylcyclohexanone-based initiator displayed much broader ideal processing windows than its counterparts with a central five-membered ring and previously described highly active TPA PIs. Surprisingly, a writing speed as high as 80 mm/s was obtained for the microfabrication of complex 3D structures employing acrylate-based formulations. These highly active TPA PIs also exhibit excellent thermal stability and remain inert to one-photon excitation. Straightforward synthesis combined with high TPA initiation efficiency makes these novel initiators promising candidates for commercialization
    corecore