925 research outputs found

    An efficient and effective approach to column-based input/output encoding in functional decomposition

    Get PDF

    A universal high energy anomaly in angle resolved photoemission spectra of high temperature superconductors - possible evidence of spinon and holon branches

    Get PDF
    A universal high energy anomaly in the single particle spectral function is reported in three different families of high temperature superconductors by using angle-resolved photoemission spectroscopy. As we follow the dispersing peak of the spectral function from the Fermi energy to the valence band complex, we find dispersion anomalies marked by two distinctive high energy scales, E_1=~ 0.38 eV and E_2=~0.8 eV. E_1 marks the energy above which the dispersion splits into two branches. One is a continuation of the near parabolic dispersion, albeit with reduced spectral weight, and reaches the bottom of the band at the gamma point at ~0.5 eV. The other is given by a peak in the momentum space, nearly independent of energy between E_1 and E_2. Above E_2, a band-like dispersion re-emerges. We conjecture that these two energies mark the disintegration of the low energy quasiparticles into a spinon and holon branch in the high T_c cuprates.Comment: accepted for publication in Phys. Rev. Let

    Instability of two dimensional graphene: Breaking sp2 bonds with soft X-rays

    Full text link
    We study the stability of various kinds of graphene samples under soft X-ray irradiation. Our results show that in single layer exfoliated graphene (a closer analogue to two dimensional material), the in-plane carbon-carbon bonds are unstable under X-ray irradiation, resulting in nanocrystalline structures. As the interaction along the third dimension increases by increasing the number of graphene layers or through the interaction with the substrate (epitaxial graphene), the effect of X-ray irradiation decreases and eventually becomes negligible for graphite and epitaxial graphene. Our results demonstrate the importance of the interaction along the third dimension in stabilizing the long range in-plane carbon-carbon bonding, and suggest the possibility of using X-ray to pattern graphene nanostructures in exfoliated graphene.Comment: 4 pages, 3 figures, Phys. Rev. B rapid communication, in pres

    Magnetic effects in sulfur-decorated graphene

    Full text link
    The interaction between two different materials can present novel phenomena that are quite different from the physical properties observed when each material stands alone. Strong electronic correlations, such as magnetism and superconductivity, can be produced as the result of enhanced Coulomb interactions between electrons. Two-dimensional materials are powerful candidates to search for the novel phenomena because of the easiness of arranging them and modifying their properties accordingly. In this work, we report magnetic effects of graphene, a prototypical non-magnetic two-dimensional semi-metal, in the proximity with sulfur, a diamagnetic insulator. In contrast to the well-defined metallic behaviour of clean graphene, an energy gap develops at the Fermi energy for the graphene/sulfur compound with decreasing temperature. This is accompanied by a steep increase of the resistance, a sign change of the slope in the magneto-resistance between high and low fields, and magnetic hysteresis. A possible origin of the observed electronic and magnetic responses is discussed in terms of the onset of low-temperature magnetic ordering. These results provide intriguing insights on the search for novel quantum phases in graphene-based compounds.Comment: 6 pages and 5 figure

    Pnictogens Allotropy and Phase Transformation during van der Waals Growth

    Full text link
    Pnictogens have multiple allotropic forms resulting from their ns2 np3 valence electronic configuration, making them the only elemental materials to crystallize in layered van der Waals (vdW) and quasi-vdW structures throughout the group. Light group VA elements are found in the layered orthorhombic A17 phase such as black phosphorus, and can transition to the layered rhombohedral A7 phase at high pressure. On the other hand, bulk heavier elements are only stable in the A7 phase. Herein, we demonstrate that these two phases not only co-exist during the vdW growth of antimony on weakly interacting surfaces, but also undertake a spontaneous transformation from the A17 phase to the thermodynamically stable A7 phase. This metastability of the A17 phase is revealed by real-time studies unraveling its thickness-driven transition to the A7 phase and the concomitant evolution of its electronic properties. At a critical thickness of ~4 nm, A17 antimony undergoes a diffusionless shuffle transition from AB to AA stacked alpha-antimonene followed by a gradual relaxation to the A7 bulk-like phase. Furthermore, the electronic structure of this intermediate phase is found to be determined by surface self-passivation and the associated competition between A7- and A17-like bonding in the bulk. These results highlight the critical role of the atomic structure and interfacial interactions in shaping the stability and electronic characteristics of vdW layered materials, thus enabling a new degree of freedom to engineer their properties using scalable processes

    Bilayer splitting and c-axis coupling in bilayer manganites showing colossal magnetoresistance

    Full text link
    By performing angle-resolved photoemission spectroscopy of the bilayer colossal magnetoresistive (CMR) manganite, La22xSr1+2xMn2O7La_{2-2x}Sr_{1+2x}Mn_{2}O_{7}, we provide the complete mapping of the Fermi level spectral weight topology. Clear and unambiguous bilayer splitting of the in-plane 3dx2y2_{x^2-y^2} band, mapped throughout the Brillouin zone, and the full mapping of the 3d3z2r2_{3z^2-r^2} band are reported. Peculiar doping and temperature dependencies of these bands imply that as transition from the ferromagnetic metallic phase approaches, either as a function of doping or temperature, coherence along the c-axis between planes within the bilayer is lost, resulting in reduced interplane coupling. These results suggest that interplane coupling plays a large role in the CMR transition.Comment: 8 pages, 6 figure
    corecore