30 research outputs found

    In Vivo Islet Protection by a Nuclear Import Inhibitor in a Mouse Model of Type 1 Diabetes

    Get PDF
    Insulin-dependent Type 1 diabetes (T1D) is a devastating autoimmune disease that destroys beta cells within the pancreatic islets and afflicts over 10 million people worldwide. These patients face life-long risks for blindness, cardiovascular and renal diseases, and complications of insulin treatment. New therapies that protect islets from autoimmune destruction and allow continuing insulin production are needed. Increasing evidence regarding the pathomechanism of T1D indicates that islets are destroyed by the relentless attack by autoreactive immune cells evolving from an aberrant action of the innate, in addition to adaptive, immune system that produces islet-toxic cytokines, chemokines, and other effectors of islet inflammation. We tested the hypothesis that targeting nuclear import of stress-responsive transcription factors evoked by agonist-stimulated innate and adaptive immunity receptors would protect islets from autoimmune destruction.Here we show that a first-in-class inhibitor of nuclear import, cSN50 peptide, affords in vivo islet protection following a 2-day course of intense treatment in NOD mice, which resulted in a diabetes-free state for one year without apparent toxicity. This nuclear import inhibitor precipitously reduces the accumulation of islet-destructive autoreactive lymphocytes while enhancing activation-induced cell death of T and B lymphocytes derived from autoimmune diabetes-prone, non-obese diabetic (NOD) mice that develop T1D. Moreover, in this widely used model of human T1D we noted attenuation of pro-inflammatory cytokine and chemokine production in immune cells.These results indicate that a novel form of immunotherapy that targets nuclear import can arrest inflammation-driven destruction of insulin-producing beta cells at the site of autoimmune attack within pancreatic islets during the progression of T1D

    Lethality in a Murine Model of Pulmonary Anthrax is Reduced by Combining Nuclear Transport Modifier with Antimicrobial Therapy

    Get PDF
    Background: In the last ten years, bioterrorism has become a serious threat and challenge to public health worldwide. Pulmonary anthrax caused by airborne Bacillus anthracis spores is a life- threatening disease often refractory to antimicrobial therapy. Inhaled spores germinate into vegetative forms that elaborate an anti-phagocytic capsule along with potent exotoxins which disrupt the signaling pathways governing the innate and adaptive immune responses and cause endothelial cell dysfunction leading to vascular injury in the lung, hypoxia, hemorrhage, and death. Methods/Principal Findings: Using a murine model of pulmonary anthrax disease, we showed that a nuclear transport modifier restored markers of the innate immune response in spore-infected animals. An 8-day protocol of single-dose ciprofloxacin had no significant effect on mortality (4 % survival) of A/J mice lethally infected with B. anthracis Sterne. Strikingly, mice were much more likely to survive infection (52 % survival) when treated with ciprofloxacin and a cellpenetrating peptide modifier of host nuclear transport, termed cSN50. In B. anthracis-infected animals treated with antibiotic alone, we detected a muted innate immune response manifested by cytokines, tumor necrosis factor alpha (TNFa), interleukin (IL)-6, and chemokine monocyte chemoattractant protein-1 (MCP-1), while the hypoxia biomarker, erythropoietin (EPO), was greatly elevated. In contrast, cSN50-treated mice receiving ciprofloxacin demonstrated a restored innate immune responsiveness and reduced EPO level. Consistent with this improvement of innate immunity response an

    Hyperlipidemic hypersensitivity to lethal microbial inflammation and its reversal by selective targeting of nuclear transport shuttles

    No full text
    Abstract Hyperlipidemia, the hallmark of Metabolic Syndrome that afflicts millions of people worldwide, exacerbates life-threatening infections. We present a new evidence for the mechanism of hyperlipidemic hypersensitivity to microbial inflammation caused by pathogen-derived inducer, LPS. We demonstrate that hyperlipidemic animals succumbed to a non-lethal dose of LPS whereas normolipidemic controls survived. Strikingly, survival of hyperlipidemic animals was restored when the nuclear import of stress-responsive transcription factors (SRTFs), Sterol Regulatory Element-Binding Proteins (SREBPs), and Carbohydrate-Responsive Element-Binding Proteins (ChREBPs) was impeded by targeting the nuclear transport checkpoint with cell-penetrating, biselective nuclear transport modifier (NTM) peptide. Furthermore, the burst of proinflammatory cytokines and chemokines, microvascular endothelial injury in the liver, lungs, heart, and kidneys, and trafficking of inflammatory cells were also suppressed. To dissect the role of nuclear transport signaling pathways we designed and developed importin-selective NTM peptides. Selective targeting of the importin Ξ±5, ferrying SRTFs and ChREBPs, protected 70–100% hyperlipidemic animals. Targeting importin Ξ²1, that transports SREBPs, was only effective after 3-week treatment that lowered blood triglycerides, cholesterol, glucose, and averted fatty liver. Thus, the mechanism of hyperlipidemic hypersensitivity to lethal microbial inflammation depends on metabolic and proinflammatory transcription factors mobilization, which can be counteracted by targeting the nuclear transport checkpoint

    Survival in inhalational anthrax was increased by combination of cSN50 with ciprofloxacin.

    No full text
    <p>Female A/J mice were infected intranasally (IN) with 10<sup>7 </sup><i>B. anthracis</i> spores and treated with 15 injections of cSN50 during the first 2 days and daily ciprofloxacin (triangles) or saline and ciprofloxacin (squares) or saline without ciprofloxacin (circles). The <i>p</i> value represents the significance of the difference in survival between the two ciprofloxacin-treated groups (with and without cSN50 peptide).</p

    Lung injury in mice challenged intranasally with <i>B. anthracis</i> was reduced by cSN50 treatment.

    No full text
    <p>Lung sections A, C, E, G and H stained with Hematoxylin and Eosin (HE). B, D, and F stained with Periodic Acid-Schiff and Hematoxylin (PAS). A–D. Untreated mice. Marked pulmonary edema (A–B) and hemorrhage (C) throughout. Clumps of bacteria (large arrow) and individual bacteria (small arrow) highlighted by PAS stain (D). E–F. Mice treated with saline+ciprofloxacin. Foci of edema, cellular infiltrates, and hemorrhage (E). Clumps of bacteria (arrow) and scattered individual bacteria visualized with PAS stain (F). G–H. Mice treated with cSN50 peptide+ciprofloxacin. Minimal edema in mice surviving 9 days (G) and essentially normal lungs in mice sacrificed at 21 days (H). PAS stained sections in mice from these groups were negative for bacilli (not shown).</p

    Survival, bacterial clearance and thrombocytopenia are improved in polymicrobial sepsis by targeting nuclear transport shuttles.

    No full text
    The rising tide of sepsis, a leading cause of death in the US and globally, is not adequately controlled by current antimicrobial therapies and supportive measures, thereby requiring new adjunctive treatments. Severe microvascular injury and multiple organ failure in sepsis are attributed to a "genomic storm" resulting from changes in microbial and host genomes encoding virulence factors and endogenous inflammatory mediators, respectively. This storm is mediated by stress-responsive transcription factors that are ferried to the nucleus by nuclear transport shuttles importins/karyopherins. We studied the impact of simultaneously targeting two of these shuttles, importin alpha 5 (Imp Ξ±5) and importin beta 1 (Imp Ξ²1), with a cell-penetrating Nuclear Transport Modifier (NTM) in a mouse model of polymicrobial sepsis. NTM reduced nuclear import of stress-responsive transcription factors nuclear factor kappa B, signal transducer and activator of transcription 1 alpha, and activator protein 1 in liver, which was also protected from sepsis-associated metabolic changes. Strikingly, NTM without antimicrobial therapy improved bacterial clearance in blood, spleen, and lungs, wherein a 700-fold reduction in bacterial burden was achieved while production of proinflammatory cytokines and chemokines in blood plasma was suppressed. Furthermore, NTM significantly improved thrombocytopenia, a prominent sign of microvascular injury in sepsis, inhibited neutrophil infiltration in the liver, decreased L-selectin, and normalized plasma levels of E-selectin and P-selectin, indicating reduced microvascular injury. Importantly, NTM combined with antimicrobial therapy extended the median time to death from 42 to 83 hours and increased survival from 30% to 55% (p = 0.022) as compared to antimicrobial therapy alone. This study documents the fundamental role of nuclear signaling mediated by Imp Ξ±5 and Imp Ξ²1 in the mechanism of polymicrobial sepsis and highlights the potential for targeting nuclear transport as an adjunctive therapy in sepsis management

    The "genomic storm" induced by bacterial endotoxin is calmed by a nuclear transport modifier that attenuates localized and systemic inflammation.

    No full text
    Lipopolysaccharide (LPS) is a potent microbial virulence factor that can trigger production of proinflammatory mediators involved in the pathogenesis of localized and systemic inflammation. Importantly, the role of nuclear transport of stress responsive transcription factors in this LPS-generated "genomic storm" remains largely undefined. We developed a new nuclear transport modifier (NTM) peptide, cell-penetrating cSN50.1, which targets nuclear transport shuttles importin Ξ±5 and importin Ξ²1, to analyze its effect in LPS-induced localized (acute lung injury) and systemic (lethal endotoxic shock) murine inflammation models. We analyzed a human genome database to match 46 genes that encode cytokines, chemokines and their receptors with transcription factors whose nuclear transport is known to be modulated by NTM. We then tested the effect of cSN50.1 peptide on proinflammatory gene expression in murine bone marrow-derived macrophages stimulated with LPS. This NTM suppressed a proinflammatory transcriptome of 37 out of 84 genes analyzed, without altering expression of housekeeping genes or being cytotoxic. Consistent with gene expression analysis in primary macrophages, plasma levels of 23 out of 26 LPS-induced proinflammatory cytokines, chemokines, and growth factors were significantly attenuated in a murine model of LPS-induced systemic inflammation (lethal endotoxic shock) while the anti-inflammatory cytokine, interleukin 10, was enhanced. This anti-inflammatory reprogramming of the endotoxin-induced genomic response was accompanied by complete protection against lethal endotoxic shock with prophylactic NTM treatment, and 75% protection when NTM was first administered after LPS exposure. In a murine model of localized lung inflammation caused by direct airway exposure to LPS, expression of cytokines and chemokines in the bronchoalveolar space was suppressed with a concomitant reduction of neutrophil trafficking. Thus, calming the LPS-triggered "genomic storm" by modulating nuclear transport with cSN50.1 peptide attenuates the systemic inflammatory response associated with lethal shock as well as localized lung inflammation

    Survival is increased by combining NTM treatment with antibiotic therapy.

    No full text
    <p>Mice were infected with CS and treated with vehicle or NTM (cSN50.1), both supplemented by antibiotic therapy with meropenem (<i>n</i> = 20 mice/group; Kaplan-Meier survival plot with <i>p</i> value calculated by log rank analysis).</p
    corecore