32,722 research outputs found

    On trapped surface formation in gravitational collapse II

    Full text link
    Further to our consideration on trapped surfaces in gravitational collapse, where pressures were allowed to be negative while satisfying weak energy condition to avoid trapped surface formation, we discuss here several other attempts of similar nature in this direction. Certain astrophysical aspects are pointed out towards examining the physical realization of such a possibility in realistic gravitational collapse

    Geometric phase for neutrino propagation in magnetic field

    Get PDF
    The geometric phase for neutrinos propagating in an adiabatically varying magnetic field in matter is calculated. It is shown that for neutrino propagation in sufficiently large magnetic field the neutrino eigenstates develop a significant geometric phase. The geometric phase varies from 2π\pi for magnetic fields ∼\sim fraction of a micro gauss to π\pi for fields ∼107\sim 10^7 gauss or more. The variation of geometric phase with magnetic field parameters is shown and its phenomenological implications are discussed

    Spherical Dust Collapse in Higher Dimensions

    Full text link
    We consider here the question if it is possible to recover cosmic censorship when a transition is made to higher dimensional spacetimes, by studying the spherically symmetric dust collapse in an arbitrary higher spacetime dimension. It is pointed out that if only black holes are to result as end state of a continual gravitational collapse, several conditions must be imposed on the collapsing configuration, some of which may appear to be restrictive, and we need to study carefully if these can be suitably motivated physically in a realistic collapse scenario. It would appear that in a generic higher dimensional dust collapse, both black holes and naked singularities would develop as end states as indicated by the results here. The mathematical approach developed here generalizes and unifies the earlier available results on higher dimensional dust collapse as we point out. Further, the dependence of black hole or naked singularity end states as collapse outcomes, on the nature of the initial data from which the collapse develops, is brought out explicitly and in a transparent manner as we show here. Our method also allows us to consider here in some detail the genericity and stability aspects related to the occurrence of naked singularities in gravitational collapse.Comment: Revtex4, Title changed, To appear in Physical Review

    Stability of Naked Singularity arising in gravitational collapse of Type I matter fields

    Full text link
    Considering gravitational collapse of Type I matter fields, we prove that, given an arbitrary C2C^{2}- mass function M(r,v)\textit{M}(r,v) and a C1C^{1}- function h(r,v)h(r,v) (through the corresponding C1C^{1}- metric function ν(t,r)\nu(t,r)), there exist infinitely many choices of energy distribution function b(r)b(r) such that the `true' initial data (M,h(r,v)\textit{M},h(r,v)) leads the collapse to the formation of naked singularity. We further prove that the occurrence of such a naked singularity is stable with respect to small changes in the initial data. We remark that though the initial data leading to both black hole and naked singularity form a "big" subset of the true initial data set, their occurrence is not generic. The terms `stability' and `genericity' are appropriately defined following the theory of dynamical systems. The particular case of radial pressure pr(r)p_{r}(r) has been illustrated in details to get clear picture of how naked singularity is formed and how, it is stable with respect to initial data.Comment: 16 pages, no figure, Latex, submitted to Praman

    On the genericity of spacetime singularities

    Get PDF
    We consider here the genericity aspects of spacetime singularities that occur in cosmology and in gravitational collapse. The singularity theorems (that predict the occurrence of singularities in general relativity) allow the singularities of gravitational collapse to be either visible to external observers or covered by an event horizon of gravity. It is shown that the visible singularities that develop as final states of spherical collapse are generic. Some consequences of this fact are discussed.Comment: 19 pages, To be published in the Raychaudhuri Volume, eds. Naresh Dadhich, Pankaj Joshi and Probir Ro

    The impact of loads on standard diameter, small diameter and mini implants: A comparative laboratory study

    Get PDF
    Objectives: While caution in the use of small-diameter (≤3.5 mm) implants has been advocated in view of an increased risk of fatigue fracture under clinical loading conditions, a variety of implant designs with diameters <3 mm are currently offered in the market for reconstructions including fixed restorations. There is an absence of reported laboratory studies and randomized-controlled clinical trials to demonstrate clinical efficacy for implant designs with small diameters. This laboratory study aimed to provide comparative data on the mechanical performance of a number of narrow commercially marketed implants. Materials and methods: Implants of varying designs were investigated under a standardized test set-up similar to that recommended for standardized ISO laboratory testing. Implant assemblies were mounted in acrylic blocks supporting laboratory cast crowns and subjected to 30° off-axis loading on an LRX Tensometer. Continuous output data were collected using Nexygen software. Results: Load/displacement curves demonstrated good grouping of samples for each design with elastic deformation up to a point of failure approximating the maximum load value for each sample. The maximum loads for Straumann (control) implants were 989 N (±107 N) for the 4.1 mm RN design, and 619 N (±50 N) for the 3.3 mm RN implant (an implant known to have a risk of fracture in clinical use). Values for mini implants were recorded as 261 N (±31 N) for the HiTec 2.4 mm implant, 237 N (±37 N) for the Osteocare 2.8 mm mini and 147 N (±25 N) for the Osteocare mini design. Other implant designs were also tested. Conclusions: The diameters of the commercially available implants tested demonstrated a major impact on their ability to withstand load, with those below 3 mm diameter yielding results significantly below a value representing a risk of fracture in clinical practice. The results therefore advocate caution when considering the applicability of implants ≤3 mm diameter. Standardized fatigue testing is recommended for all commercially available implants
    • …
    corecore