369 research outputs found
Epidemiology and etiology of meningioma.
Although most meningiomas are encapsulated and benign tumors with limited numbers of genetic aberrations, their intracranial location often leads to serious and potentially lethal consequences. They are the most frequently diagnosed primary brain tumor accounting for 33.8% of all primary brain and central nervous system tumors reported in the United States between 2002 and 2006. Inherited susceptibility to meningioma is suggested both by family history and candidate gene studies in DNA repair genes. People with certain mutations in the neurofibromatosis gene (NF2) have a very substantial increased risk for meningioma. High dose ionizing radiation exposure is an established risk factor for meningioma, and lower doses may also increase risk, but which types and doses are controversial or understudied. Because women are twice as likely as men to develop meningiomas and these tumors harbor hormone receptors, an etiologic role for hormones (both endogenous and exogenous) has been hypothesized. The extent to which immunologic factors influence meningioma etiology has been largely unexplored. Growing emphasis on brain tumor research coupled with the advent of new genetic and molecular epidemiologic tools in genetic and molecular epidemiology promise hope for advancing knowledge about the causes of intra-cranial meningioma. In this review, we highlight current knowledge about meningioma epidemiology and etiology and suggest future research directions
Genetic variants in ARID5B and CEBPE are childhood ALL susceptibility loci in Hispanics.
Recent genome-wide studies conducted in European Whites have identified novel susceptibility genes for childhood acute lymphoblastic leukemia (ALL). We sought to examine whether these loci are susceptibility genes among Hispanics, whose reported incidence of childhood ALL is the highest of all ethnic groups in California, and whether their effects differ between Hispanics and non-Hispanic Whites (NHWs). We genotyped 13 variants in these genes among 706 Hispanic (300 cases, 406 controls) and 594 NHW (225 cases, 369 controls) participants in a matched population-based case-control study in California. We found significant associations for the five studied ARID5B variants in both Hispanics (p values of 1.0 × 10(-9) to 0.004) and NHWs (p values of 2.2 × 10(-6) to 0.018). Risk estimates were in the same direction in both groups (ORs of 1.53-1.99 and 1.37-1.84, respectively) and strengthened when restricted to B-cell precursor high-hyperdiploid ALL (>50 chromosomes; ORs of 2.21-3.22 and 1.67-2.71, respectively). Similar results were observed for the single CEBPE variant. Hispanics and NHWs exhibited different susceptibility loci at CDKN2A. Although IKZF1 loci showed significant susceptibility effects among NHWs (p < 1 × 10(-5)), their effects among Hispanics were in the same direction but nonsignificant, despite similar minor allele frequencies. Future studies should examine whether the observed effects vary by environmental, immunological, or lifestyle factors
Recommended from our members
Immune factors preceding diagnosis of glioma: a Prostate Lung Colorectal Ovarian Cancer Screening Trial nested case-control study.
BackgroundEpidemiological studies of adult glioma have identified genetic and environmental risk factors, but much remains unclear. The aim of the current study was to evaluate anthropometric, disease-related, and prediagnostic immune-related factors for relationship with glioma risk.MethodsWe conducted a nested case-control study among the intervention arm of the Prostate, Lung, Colorectal, and Ovarian Cancer (PLCO) Screening Trial. One hundred and twenty-four glioma cases were identified and each matched to four controls. Baseline characteristics were collected at enrollment and were evaluated for association with glioma status. Serum specimens were collected at yearly intervals and were analyzed for immune-related factors including TGF-β1, TNF-α, total IgE, and allergen-specific IgE. Immune factors were evaluated at baseline in a multivariate conditional logistic regression model, along with one additional model that incorporated the latest available measurement.ResultsA family history of glioma among first-degree relatives was associated with increased glioma risk (OR = 4.41, P = .002). In multivariate modeling of immune factors at baseline, increased respiratory allergen-specific IgE was inversely associated with glioma risk (OR for allergen-specific IgE > 0.35 PAU/L: 0.59, P = .03). A logistic regression model that incorporated the latest available measurements found a similar association for allergen-specific IgE (P = .005) and showed that elevated TGF-β1 was associated with increased glioma risk (P-value for trend <.0001).ConclusionThe results from this prospective prediagnostic study suggest that several immune-related factors are associated with glioma risk. The association observed for TGF-β1 when sampling closer to the time of diagnosis may reflect the nascent brain tumor's feedback on immune function
Clonal and microclonal mutational heterogeneity in high hyperdiploid acute lymphoblastic leukemia.
High hyperdiploidy (HD), the most common cytogenetic subtype of B-cell acute lymphoblastic leukemia (B-ALL), is largely curable but significant treatment-related morbidity warrants investigating the biology and identifying novel drug targets. Targeted deep-sequencing of 538 cancer-relevant genes was performed in 57 HD-ALL patients lacking overt KRAS and NRAS hotspot mutations and lacking common B-ALL deletions to enrich for discovery of novel driver genes. One-third of patients harbored damaging mutations in epigenetic regulatory genes, including the putative novel driver DOT1L (n=4). Receptor tyrosine kinase (RTK)/Ras/MAPK signaling pathway mutations were found in two-thirds of patients, including novel mutations in ROS1, which mediates phosphorylation of the PTPN11-encoded protein SHP2. Mutations in FLT3 significantly co-occurred with DOT1L (p=0.04), suggesting functional cooperation in leukemogenesis. We detected an extraordinary level of tumor heterogeneity, with microclonal (mutant allele fraction <0.10) KRAS, NRAS, FLT3, and/or PTPN11 hotspot mutations evident in 31/57 (54.4%) patients. Multiple KRAS and NRAS codon 12 and 13 microclonal mutations significantly co-occurred within tumor samples (p=4.8x10-4), suggesting ongoing formation of and selection for Ras-activating mutations. Future work is required to investigate whether tumor microheterogeneity impacts clinical outcome and to elucidate the functional consequences of epigenetic dysregulation in HD-ALL, potentially leading to novel therapeutic approaches
FLT3 mutation incidence and timing of origin in a population case series of pediatric leukemia
<p>Abstract</p> <p>Background</p> <p>Mutations in <it>FLT3 </it>result in activated tyrosine kinase activity, cell growth stimulation, and a poor prognosis among various subtypes of leukemia. The causes and timing of the mutations are not currently known. We evaluated the prevalence and timing of origin of <it>FLT3 </it>mutations in a population series of childhood leukemia patients from Northern California.</p> <p>Methods</p> <p>We screened and sequenced <it>FLT3 </it>mutations (point mutations and internal tandem duplications, ITDs) among 517 childhood leukemia patients, and assessed whether these mutations occurred before or after birth using sensitive "backtracking" methods.</p> <p>Results</p> <p>We determined a mutation prevalence of 9 of 73 acute myeloid leukemias (AMLs, 12%) and 9 of 441 acute lymphocytic leukemias (ALLs, 2%). Among AMLs, <it>FLT3 </it>mutations were more common in older patients, and among ALLs, <it>FLT3 </it>mutations were more common in patients with high hyperdiploidy (3.7%) than those without this cytogenetic feature (1.4%). Five <it>FLT3 </it>ITDs, one deletion mutation, and 3 point mutations were assessed for their presence in neonatal Guthrie spots using sensitive real-time PCR techniques, and no patients were found to harbor <it>FLT3 </it>mutations at birth.</p> <p>Conclusions</p> <p><it>FLT3 </it>mutations were not common in our population-based patient series in California, and patients who harbor <it>FLT3 </it>mutations most likely acquire them after they are born.</p
Aging and Environmental Exposures Alter Tissue-Specific DNA Methylation Dependent upon CpG Island Context
Epigenetic control of gene transcription is critical for normal human development and cellular differentiation. While alterations of epigenetic marks such as DNA methylation have been linked to cancers and many other human diseases, interindividual epigenetic variations in normal tissues due to aging, environmental factors, or innate susceptibility are poorly characterized. The plasticity, tissue-specific nature, and variability of gene expression are related to epigenomic states that vary across individuals. Thus, population-based investigations are needed to further our understanding of the fundamental dynamics of normal individual epigenomes. We analyzed 217 non-pathologic human tissues from 10 anatomic sites at 1,413 autosomal CpG loci associated with 773 genes to investigate tissue-specific differences in DNA methylation and to discern how aging and exposures contribute to normal variation in methylation. Methylation profile classes derived from unsupervised modeling were significantly associated with age (P,0.0001) and were significant predictors of tissue origin (P,0.0001). In solid tissues (n = 119) we found striking, highly significant CpG island–dependent correlations between age and methylation; loci in CpG islands gained methylation with age, loci not in CpG islands lost methylation with age (P,0.001), and this pattern was consistent across tissues and in an analysis of blood-derived DNA. Our data clearly demonstrate age- and exposure-related differences in tissue-specific methylation and significant age-associated methylation patterns which are CpG island context-dependent. This work provides novel insight into the role of aging and the environment in susceptibility to diseases such as cancer and critically informs the field of epigenomics by providing evidence of epigenetic dysregulation by age-related methylation alterations. Collectively we reveal key issues to consider both in the construction of reference and disease-related epigenomes and in the interpretation of potentially pathologically important alterations
- …