16 research outputs found

    Cyclocondensation of Amino-propargyl Silanes

    No full text
    Amino-propargyl silanes condense with carbonyl compounds to form imines and subsequently cyclize to form allenylidene tetrahydroquinolines. The cyclocondensations are catalyzed by a variety of Brønsted acids, among which phosphoric acids provide the highest yields. Subsequent intramolecular and intermolecular additions to the allene moiety provide complex polycyclic amines

    A Concise Total Synthesis of Dictyodendrins F, H, and I Using Aryl Ynol Ethers as Key Building Blocks

    No full text
    We report a concise total synthesis of dictyodendrin F and the first total syntheses of dictyodendrins H and I in six steps. In these syntheses, aryl ynol ethers were employed as the key building blocks to introduce aryl and heteroaryl rings in the dictyodendrins. This rapid synthesis utilized a novel hetero-[2 + 2]-cycloaddition reaction between two aryl ynol ethers to yield a cyclobutenone ring. The cyclobutenone was sequentially converted into a highly substituted carbazole via a retro-4π/6π-electrocyclization–<i>N</i>-acylation cascade reaction to provide the dictyodendrin core. Consecutive intramolecular oxidative coupling and deprotection gave dictyodendrins F, H, and I

    [3 + 2]-Cycloadditions of Azomethine Imines and Ynolates

    No full text
    A novel [3 + 2]-cycloaddition between azomethine imines and lithium ynolates is described to synthesize bicyclic pyrazolidinones. These bicyclic pyrazolidinones are versatile intermediates to form β-amino acids and monocyclic pyrazolidinones. High diastereoselectivity and stereospecificity allow access to optically active products

    On the Rapid Oxidation of Allene-Containing Phosphines

    No full text
    Allene-containing phosphines have recently been shown to serve as effective ligands in transition metal-catalyzed enantioselective reactions. Surprisingly, (2-allenylphenyl)­diphenyl phosphines rapidly oxidize when exposed to air, whereas many other triaryl phosphines are stable under ambient conditions. Here we describe experiments designed to understand the origin of this behavior. Stereochemical probes and an isolated phosphonium complex support the hypothesis that phosphines can cyclize onto pendant allenes and that the resultant zwitterion undergoes rapid oxidation with molecular oxygen

    Chiral Allene-Containing Phosphines in Asymmetric Catalysis

    No full text
    We demonstrate that allenes, chiral 1,2-dienes, appended with basic functionality can serve as ligands for transition metals. We describe an allene-containing bisphosphine that, when coordinated to Rh(I), promotes the asymmetric addition of arylboronic acids to α-keto esters with high enantioselectivity. Solution and solid-state structural analysis reveals that one olefin of the allene can coordinate to transition metals, generating bi- and tridentate ligands

    Chiral Allene-Containing Phosphines in Asymmetric Catalysis

    No full text
    We demonstrate that allenes, chiral 1,2-dienes, appended with basic functionality can serve as ligands for transition metals. We describe an allene-containing bisphosphine that, when coordinated to Rh(I), promotes the asymmetric addition of arylboronic acids to α-keto esters with high enantioselectivity. Solution and solid-state structural analysis reveals that one olefin of the allene can coordinate to transition metals, generating bi- and tridentate ligands

    Chiral Allene-Containing Phosphines in Asymmetric Catalysis

    No full text
    We demonstrate that allenes, chiral 1,2-dienes, appended with basic functionality can serve as ligands for transition metals. We describe an allene-containing bisphosphine that, when coordinated to Rh(I), promotes the asymmetric addition of arylboronic acids to α-keto esters with high enantioselectivity. Solution and solid-state structural analysis reveals that one olefin of the allene can coordinate to transition metals, generating bi- and tridentate ligands
    corecore