9 research outputs found
Surfing Transcriptomic Landscapes. A Step beyond the Annotation of Chromosome 16 Proteome
The
Spanish team of the Human Proteome Project (SpHPP) marked the
annotation of Chr16 and data analysis as one of its priorities. Precise
annotation of Chromosome 16 proteins according to C-HPP criteria is
presented. Moreover, Human Body Map 2.0 RNA-Seq and Encyclopedia of
DNA Elements (ENCODE) data sets were used to obtain further information
relative to cell/tissue specific chromosome 16 coding gene expression
patterns and to infer the presence of missing proteins. Twenty-four
shotgun 2D-LC–MS/MS and gel/LC–MS/MS MIAPE compliant
experiments, representing 41% coverage of chromosome 16 proteins,
were performed. Furthermore, mapping of large-scale multicenter mass
spectrometry data sets from CCD18, MCF7, Jurkat, and Ramos cell lines
into RNA-Seq data allowed further insights relative to correlation
of chromosome 16 transcripts and proteins. Detection and quantification
of chromosome 16 proteins in biological matrices by SRM procedures
are also primary goals of the SpHPP. Two strategies were undertaken:
one focused on known proteins, taking advantage of MS data already
available, and the second, aimed at the detection of the missing proteins,
is based on the expression of recombinant proteins to gather MS information
and optimize SRM methods that will be used in real biological samples.
SRM methods for 49 known proteins and for recombinant forms of 24
missing proteins are reported in this study
Surfing Transcriptomic Landscapes. A Step beyond the Annotation of Chromosome 16 Proteome
The
Spanish team of the Human Proteome Project (SpHPP) marked the
annotation of Chr16 and data analysis as one of its priorities. Precise
annotation of Chromosome 16 proteins according to C-HPP criteria is
presented. Moreover, Human Body Map 2.0 RNA-Seq and Encyclopedia of
DNA Elements (ENCODE) data sets were used to obtain further information
relative to cell/tissue specific chromosome 16 coding gene expression
patterns and to infer the presence of missing proteins. Twenty-four
shotgun 2D-LC–MS/MS and gel/LC–MS/MS MIAPE compliant
experiments, representing 41% coverage of chromosome 16 proteins,
were performed. Furthermore, mapping of large-scale multicenter mass
spectrometry data sets from CCD18, MCF7, Jurkat, and Ramos cell lines
into RNA-Seq data allowed further insights relative to correlation
of chromosome 16 transcripts and proteins. Detection and quantification
of chromosome 16 proteins in biological matrices by SRM procedures
are also primary goals of the SpHPP. Two strategies were undertaken:
one focused on known proteins, taking advantage of MS data already
available, and the second, aimed at the detection of the missing proteins,
is based on the expression of recombinant proteins to gather MS information
and optimize SRM methods that will be used in real biological samples.
SRM methods for 49 known proteins and for recombinant forms of 24
missing proteins are reported in this study
Surfing Transcriptomic Landscapes. A Step beyond the Annotation of Chromosome 16 Proteome
The
Spanish team of the Human Proteome Project (SpHPP) marked the
annotation of Chr16 and data analysis as one of its priorities. Precise
annotation of Chromosome 16 proteins according to C-HPP criteria is
presented. Moreover, Human Body Map 2.0 RNA-Seq and Encyclopedia of
DNA Elements (ENCODE) data sets were used to obtain further information
relative to cell/tissue specific chromosome 16 coding gene expression
patterns and to infer the presence of missing proteins. Twenty-four
shotgun 2D-LC–MS/MS and gel/LC–MS/MS MIAPE compliant
experiments, representing 41% coverage of chromosome 16 proteins,
were performed. Furthermore, mapping of large-scale multicenter mass
spectrometry data sets from CCD18, MCF7, Jurkat, and Ramos cell lines
into RNA-Seq data allowed further insights relative to correlation
of chromosome 16 transcripts and proteins. Detection and quantification
of chromosome 16 proteins in biological matrices by SRM procedures
are also primary goals of the SpHPP. Two strategies were undertaken:
one focused on known proteins, taking advantage of MS data already
available, and the second, aimed at the detection of the missing proteins,
is based on the expression of recombinant proteins to gather MS information
and optimize SRM methods that will be used in real biological samples.
SRM methods for 49 known proteins and for recombinant forms of 24
missing proteins are reported in this study
Surfing Transcriptomic Landscapes. A Step beyond the Annotation of Chromosome 16 Proteome
The
Spanish team of the Human Proteome Project (SpHPP) marked the
annotation of Chr16 and data analysis as one of its priorities. Precise
annotation of Chromosome 16 proteins according to C-HPP criteria is
presented. Moreover, Human Body Map 2.0 RNA-Seq and Encyclopedia of
DNA Elements (ENCODE) data sets were used to obtain further information
relative to cell/tissue specific chromosome 16 coding gene expression
patterns and to infer the presence of missing proteins. Twenty-four
shotgun 2D-LC–MS/MS and gel/LC–MS/MS MIAPE compliant
experiments, representing 41% coverage of chromosome 16 proteins,
were performed. Furthermore, mapping of large-scale multicenter mass
spectrometry data sets from CCD18, MCF7, Jurkat, and Ramos cell lines
into RNA-Seq data allowed further insights relative to correlation
of chromosome 16 transcripts and proteins. Detection and quantification
of chromosome 16 proteins in biological matrices by SRM procedures
are also primary goals of the SpHPP. Two strategies were undertaken:
one focused on known proteins, taking advantage of MS data already
available, and the second, aimed at the detection of the missing proteins,
is based on the expression of recombinant proteins to gather MS information
and optimize SRM methods that will be used in real biological samples.
SRM methods for 49 known proteins and for recombinant forms of 24
missing proteins are reported in this study
Surfing Transcriptomic Landscapes. A Step beyond the Annotation of Chromosome 16 Proteome
The
Spanish team of the Human Proteome Project (SpHPP) marked the
annotation of Chr16 and data analysis as one of its priorities. Precise
annotation of Chromosome 16 proteins according to C-HPP criteria is
presented. Moreover, Human Body Map 2.0 RNA-Seq and Encyclopedia of
DNA Elements (ENCODE) data sets were used to obtain further information
relative to cell/tissue specific chromosome 16 coding gene expression
patterns and to infer the presence of missing proteins. Twenty-four
shotgun 2D-LC–MS/MS and gel/LC–MS/MS MIAPE compliant
experiments, representing 41% coverage of chromosome 16 proteins,
were performed. Furthermore, mapping of large-scale multicenter mass
spectrometry data sets from CCD18, MCF7, Jurkat, and Ramos cell lines
into RNA-Seq data allowed further insights relative to correlation
of chromosome 16 transcripts and proteins. Detection and quantification
of chromosome 16 proteins in biological matrices by SRM procedures
are also primary goals of the SpHPP. Two strategies were undertaken:
one focused on known proteins, taking advantage of MS data already
available, and the second, aimed at the detection of the missing proteins,
is based on the expression of recombinant proteins to gather MS information
and optimize SRM methods that will be used in real biological samples.
SRM methods for 49 known proteins and for recombinant forms of 24
missing proteins are reported in this study
Surfing Transcriptomic Landscapes. A Step beyond the Annotation of Chromosome 16 Proteome
The
Spanish team of the Human Proteome Project (SpHPP) marked the
annotation of Chr16 and data analysis as one of its priorities. Precise
annotation of Chromosome 16 proteins according to C-HPP criteria is
presented. Moreover, Human Body Map 2.0 RNA-Seq and Encyclopedia of
DNA Elements (ENCODE) data sets were used to obtain further information
relative to cell/tissue specific chromosome 16 coding gene expression
patterns and to infer the presence of missing proteins. Twenty-four
shotgun 2D-LC–MS/MS and gel/LC–MS/MS MIAPE compliant
experiments, representing 41% coverage of chromosome 16 proteins,
were performed. Furthermore, mapping of large-scale multicenter mass
spectrometry data sets from CCD18, MCF7, Jurkat, and Ramos cell lines
into RNA-Seq data allowed further insights relative to correlation
of chromosome 16 transcripts and proteins. Detection and quantification
of chromosome 16 proteins in biological matrices by SRM procedures
are also primary goals of the SpHPP. Two strategies were undertaken:
one focused on known proteins, taking advantage of MS data already
available, and the second, aimed at the detection of the missing proteins,
is based on the expression of recombinant proteins to gather MS information
and optimize SRM methods that will be used in real biological samples.
SRM methods for 49 known proteins and for recombinant forms of 24
missing proteins are reported in this study
Surfing Transcriptomic Landscapes. A Step beyond the Annotation of Chromosome 16 Proteome
The
Spanish team of the Human Proteome Project (SpHPP) marked the
annotation of Chr16 and data analysis as one of its priorities. Precise
annotation of Chromosome 16 proteins according to C-HPP criteria is
presented. Moreover, Human Body Map 2.0 RNA-Seq and Encyclopedia of
DNA Elements (ENCODE) data sets were used to obtain further information
relative to cell/tissue specific chromosome 16 coding gene expression
patterns and to infer the presence of missing proteins. Twenty-four
shotgun 2D-LC–MS/MS and gel/LC–MS/MS MIAPE compliant
experiments, representing 41% coverage of chromosome 16 proteins,
were performed. Furthermore, mapping of large-scale multicenter mass
spectrometry data sets from CCD18, MCF7, Jurkat, and Ramos cell lines
into RNA-Seq data allowed further insights relative to correlation
of chromosome 16 transcripts and proteins. Detection and quantification
of chromosome 16 proteins in biological matrices by SRM procedures
are also primary goals of the SpHPP. Two strategies were undertaken:
one focused on known proteins, taking advantage of MS data already
available, and the second, aimed at the detection of the missing proteins,
is based on the expression of recombinant proteins to gather MS information
and optimize SRM methods that will be used in real biological samples.
SRM methods for 49 known proteins and for recombinant forms of 24
missing proteins are reported in this study
Surfing Transcriptomic Landscapes. A Step beyond the Annotation of Chromosome 16 Proteome
The
Spanish team of the Human Proteome Project (SpHPP) marked the
annotation of Chr16 and data analysis as one of its priorities. Precise
annotation of Chromosome 16 proteins according to C-HPP criteria is
presented. Moreover, Human Body Map 2.0 RNA-Seq and Encyclopedia of
DNA Elements (ENCODE) data sets were used to obtain further information
relative to cell/tissue specific chromosome 16 coding gene expression
patterns and to infer the presence of missing proteins. Twenty-four
shotgun 2D-LC–MS/MS and gel/LC–MS/MS MIAPE compliant
experiments, representing 41% coverage of chromosome 16 proteins,
were performed. Furthermore, mapping of large-scale multicenter mass
spectrometry data sets from CCD18, MCF7, Jurkat, and Ramos cell lines
into RNA-Seq data allowed further insights relative to correlation
of chromosome 16 transcripts and proteins. Detection and quantification
of chromosome 16 proteins in biological matrices by SRM procedures
are also primary goals of the SpHPP. Two strategies were undertaken:
one focused on known proteins, taking advantage of MS data already
available, and the second, aimed at the detection of the missing proteins,
is based on the expression of recombinant proteins to gather MS information
and optimize SRM methods that will be used in real biological samples.
SRM methods for 49 known proteins and for recombinant forms of 24
missing proteins are reported in this study
Surfing Transcriptomic Landscapes. A Step beyond the Annotation of Chromosome 16 Proteome
The
Spanish team of the Human Proteome Project (SpHPP) marked the
annotation of Chr16 and data analysis as one of its priorities. Precise
annotation of Chromosome 16 proteins according to C-HPP criteria is
presented. Moreover, Human Body Map 2.0 RNA-Seq and Encyclopedia of
DNA Elements (ENCODE) data sets were used to obtain further information
relative to cell/tissue specific chromosome 16 coding gene expression
patterns and to infer the presence of missing proteins. Twenty-four
shotgun 2D-LC–MS/MS and gel/LC–MS/MS MIAPE compliant
experiments, representing 41% coverage of chromosome 16 proteins,
were performed. Furthermore, mapping of large-scale multicenter mass
spectrometry data sets from CCD18, MCF7, Jurkat, and Ramos cell lines
into RNA-Seq data allowed further insights relative to correlation
of chromosome 16 transcripts and proteins. Detection and quantification
of chromosome 16 proteins in biological matrices by SRM procedures
are also primary goals of the SpHPP. Two strategies were undertaken:
one focused on known proteins, taking advantage of MS data already
available, and the second, aimed at the detection of the missing proteins,
is based on the expression of recombinant proteins to gather MS information
and optimize SRM methods that will be used in real biological samples.
SRM methods for 49 known proteins and for recombinant forms of 24
missing proteins are reported in this study