3 research outputs found

    Electrokinetic Preconcentration and Detection of Neuropeptides at Patterned Graphene-Modified Electrodes in a Nanochannel

    No full text
    Neuropeptides are vital to the transmission and modulation of neurological signals, with Neuropeptide Y (NPY) and Orexin A (OXA) offering diagnostic information on stress, depression, and neurotrauma. NPY is an especially significant biomarker, since it can be noninvasively collected from sweat, but its detection has been limited by poor sensitivity, long assay times, and the inability to scale-down sample volumes. Herein, we apply electrokinetic preconcentration of the neuropeptide onto patterned graphene-modified electrodes in a nanochannel by frequency-selective dielectrophoresis for 10 s or by electrochemical adsorptive accumulation for 300 s, to enable the electrochemical detection of NPY and OXA at picomolar levels from subnanoliter samples, with sufficient signal sensitivity to avoid interferences from high levels of dopamine and ascorbic acid within biological matrices. Given the high sensitivity of the methodology within small volume samples, we envision its utility toward off-line detection from droplets collected by microdialysis for the eventual measurement of neuropeptides at high spatial and temporal resolutions

    Structured DNA Aptamer Interactions with Gold Nanoparticles

    No full text
    DNA aptamers that bind biomolecular targets are of interest as the recognition element in colorimetric sensors based on gold nanoparticles (AuNP), where sensor functionality is related to changes in AuNP colloidal stability upon target binding. In order to understand the role of target binding on DNA–AuNP colloidal stability, we have used high-resolution NMR to characterize the interactions of the 36 nucleotide cocaine-binding aptamer (MN4) and related aptamers with AuNPs, cocaine, and cocaine metabolites. Changes in the aptamer imino proton NMR spectra with low (20 nM) concentrations of AuNP show that the aptamers undergo fast-exchange adsorption on the nanoparticle surface. An analysis of the spectral changes and the comparison with modified MN4 aptamers shows that the AuNP binding domain is localized on stem two of the three-stemmed aptamer. The identification of an AuNP recognition domain allows for the incorporation of AuNP binding functionality into a wide variety of aptamers. AuNP-induced spectral changes are not observed for the aptamer–AuNP mixtures in the presence of cocaine, demonstrating that aptamer absorption on the AuNP surface is modulated by aptamer–target interactions. The data also show that the DNA–AuNP interactions and sensor functionality are critically dependent on aptamer folding

    Rational Approach to Optimizing Conformation-Switching Aptamers for Biosensing Applications

    No full text
    The utilization of structure-switching aptamers (SSAs) has enabled the development of novel sensing platforms for the sensitive and continuous detection of molecules. De novo development of SSAs, however, is complex and laborious. Here we describe a rational approach to SSA optimization that simultaneously improves aptamer binding affinity and introduces target-dependent conformation-switching for compatibility with real-world biosensor applications. Key structural features identified from NMR and computational modeling were used to optimize conformational switching in the presence of target, while large-scale, microarray-based mutation analysis was used to map regions of the aptamer permissive to mutation and identify combinations of mutations with stronger binding affinity. Optimizations were carried out in a relevant biofluid to ensure a seamless transition of the aptamer to a biosensing platform. Initial proof-of-concept for this approach is demonstrated with a cortisol binding aptamer but can easily be translated to other relevant aptamers. Cortisol is a hormone correlated with the stress response that has been associated with various medical conditions and is present at quantifiable levels in accessible biofluids. The ability to continuously track levels of stress in real-time via cortisol monitoring, which can be enabled by the aptamers reported here, is crucial for assessing human health and performance
    corecore