2,315 research outputs found

    On statistics, computation and scalability

    Full text link
    How should statistical procedures be designed so as to be scalable computationally to the massive datasets that are increasingly the norm? When coupled with the requirement that an answer to an inferential question be delivered within a certain time budget, this question has significant repercussions for the field of statistics. With the goal of identifying "time-data tradeoffs," we investigate some of the statistical consequences of computational perspectives on scability, in particular divide-and-conquer methodology and hierarchies of convex relaxations.Comment: Published in at http://dx.doi.org/10.3150/12-BEJSP17 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Leo Breiman

    Full text link
    Statistics is a uniquely difficult field to convey to the uninitiated. It sits astride the abstract and the concrete, the theoretical and the applied. It has a mathematical flavor and yet it is not simply a branch of mathematics. Its core problems blend into those of the disciplines that probe into the nature of intelligence and thought, in particular philosophy, psychology and artificial intelligence. Debates over foundational issues have waxed and waned, but the field has not yet arrived at a single foundational perspective.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS387 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Bayesian inference for queueing networks and modeling of internet services

    Get PDF
    Modern Internet services, such as those at Google, Yahoo!, and Amazon, handle billions of requests per day on clusters of thousands of computers. Because these services operate under strict performance requirements, a statistical understanding of their performance is of great practical interest. Such services are modeled by networks of queues, where each queue models one of the computers in the system. A key challenge is that the data are incomplete, because recording detailed information about every request to a heavily used system can require unacceptable overhead. In this paper we develop a Bayesian perspective on queueing models in which the arrival and departure times that are not observed are treated as latent variables. Underlying this viewpoint is the observation that a queueing model defines a deterministic transformation between the data and a set of independent variables called the service times. With this viewpoint in hand, we sample from the posterior distribution over missing data and model parameters using Markov chain Monte Carlo. We evaluate our framework on data from a benchmark Web application. We also present a simple technique for selection among nested queueing models. We are unaware of any previous work that considers inference in networks of queues in the presence of missing data.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS392 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Probabilistic Inference in Queueing Networks

    Get PDF
    Although queueing models have long been used to model the performance of computer systems, they are out of favor with practitioners, because they have a reputation for requiring unrealistic distributional assumptions. In fact, these distributional assumptions are used mainly to facilitate analytic approximations such as asymptotics and large-deviations bounds. In this paper, we analyze queueing networks from the probabilistic modeling perspective, applying inference methods from graphical models that afford significantly more modeling flexibility. In particular, we present a Gibbs sampler and stochastic EM algorithm for networks of M/M/1 FIFO queues. As an application of this technique, we localize performance problems in distributed systems from incomplete system trace data. On both synthetic networks and an actual distributed Web application, the model accurately recovers the system’s service time using 1 % of the available trace data.

    Inference and Learning in Networks of Queues

    Get PDF
    Probabilistic models of the performance of computer systems are useful both for predicting system performance in new conditions, and for diagnosing past performance problems. The most popular performance models are networks of queues. However, no current methods exist for parameter estimation or inference in networks of queues with missing data. In this paper, we present a novel viewpoint that combines queueing networks and graphical models, allowing Markov chain Monte Carlo to be applied. We demonstrate the effectiveness of our sampler on real-world data from a benchmark Web application.
    • …
    corecore