49 research outputs found

    Scar folding for the treatment of nostril stenosis after open rhinoplasty: a case report

    Get PDF
    A 25-year-old woman was referred for discomfort when breathing through her left nose. The patient had undergone augmentation rhinoplasty 5 years ago, after which hypertrophic scarring occurred in the left nostril. Several corticosteroid injections were administered as the first line of treatment, but with no symptom improvement. Therefore, we proceeded with surgical scar removal, with the use of a nasal conformer. However, scarring in the left nostril recurred. Accordingly, we proceeded with further surgical treatment using the scar folding technique. After scar folding, neither scarring nor nostril stenosis recurred during 1 year of postoperative follow-up. To summarize, herein, we report a case of hypertrophic scarring in the nostril that was successfully treated with the scar folding technique

    Potential Health Risks of Chemicals in Car Colorant Products

    No full text
    Public concern regarding the use of products with chemicals has increased in Korea, following reports indicating that hazardous chemicals in products, such as disinfectants, can cause fatal lung disease. Despite the widespread use of car colorant products, little is known regarding their potential health risks. The purpose of this study was to determine the potential health risks of substances that exist in car colorant products. Thirteen car colorant products were purchased from the Korean market and 15 commonly used chemicals were analyzed. Exposure and risk assessments were conducted in two assessment stages (screening and refined). The analysis showed that all of the examined products contained toluene, ethylbenzene, and xylene. The maximum concentration of toluene was 52.5%, with a median concentration of 10.8%. Tier 1 (screening) assessment showed that four chemicals (toluene, ethylbenzene, xylene, and 2-butoxyethanol) may pose health risks, but tier 2 (refined) assessment showed that these chemicals do not pose any risk. However, these chemicals were present in all of the examined products, and government regulations did not control their concentrations in these products. Therefore, we suggest that levels of toluene, ethylbenzene, and xylene in car colorant products should be regulated to protect public health

    Wide-range robust wireless power transfer using heterogeneously coupled and flippable neutrals in parity-time symmetry

    No full text
    Recently, stationary wireless power transfer (WPT) has been widely adopted in commercial devices. However, the current WPT configuration is limited in its operational area and susceptible to operating condition changes, impeding its applications for dynamic environments. To overcome the limitations, we propose a WPT system with laterally aligned neutral elements in parity-time (PT) symmetry, which can widen the operational area with the number of neutrals N. Compared to the conventional multiple-input-single-output WPT, the dimension of system complexity is substantially reduced from R × CN to RN+1 because the neutral amplitudes are simply controlled by coupling capacitors. The operational frequency is automatically adjusted to a real eigenvalue of the PT-symmetric system to achieve high voltage gain and efficiency, making the system robust. The performance of the system calculated by the coupled-mode theory was experimentally verified with rigid and flexible types of receivers, confirming its potential in both industrial and biomedical electronics.11Nsciescopu

    Material Design and Fabrication Strategies for Stretchable Metallic Nanocomposites

    No full text
    Stretchable conductive nanocomposites fabricated by integrating metallic nanomaterials with elastomers have become a vital component of human-friendly electronics, such as wearable and implantable devices, due to their unconventional electrical and mechanical characteristics. Understanding the detailed material design and fabrication strategies to improve the conductivity and stretchability of the nanocomposites is therefore important. This Review discusses the recent technological advances toward high performance stretchable metallic nanocomposites. First, the effect of the filler material design on the conductivity is briefly discussed, followed by various nanocomposite fabrication techniques to achieve high conductivity. Methods for maintaining the initial conductivity over a long period of time are also summarized. Then, strategies on controlled percolation of nanomaterials are highlighted, followed by a discussion regarding the effects of the morphology of the nanocomposite and postfabricated 3D structures on achieving high stretchability. Finally, representative examples of applications of such nanocomposites in biointegrated electronics are provided. A brief outlook concludes this Review.N

    Wearable Sensing Systems with Mechanically Soft Assemblies of Nanoscale Materials

    No full text
    Emerging classes of wearable sensing systems that measure motion, physiological, electrophysiological, and electrochemical signals emanating from the human body have driven significant advances in clinical and academic research. These wearable systems rely on important breakthroughs in micro/nano-electronics, information technology, and materials science. Compared to conventional bulk materials, nanomaterials with zero, one, and two dimensional (0D, 1D, and 2D) architectures exhibit unusual physical properties that could dramatically improve the performance of sensors. By integrating high performance sensors with soft and stretchable electronics, research groups are enabling fully-integrated multifunctional sensing systems in skin-worn formats, optimized for managing specific disease models. In this progress report, recent advances in soft wearable sensing systems based on assemblies of 0D, 1D, and 2D nanomaterials, unpackaged integrated circuits, and highly elastic (moisture resistant) encapsulating layers are reviewed. These advanced bioelectronic constructs combine multimodal sensor arrays, data storage elements, wireless data transmission modules, and actuators for continuous monitoring. The soft wearable systems that embody these unusual electronic materials and soft packaging strategies are beginning to impact big data analysis, remote health monitoring, and transdermal drug delivery applications, by transitioning from primary research discoveries to commercial adoption. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei5

    Wearable sensing systems with mechanically soft assemblies of nanoscale materials

    No full text
    Emerging classes of wearable sensing systems that measure motion, physiological, electrophysiological, and electrochemical signals emanating from the human body have driven significant advances in clinical and academic research. These wearable systems rely on important breakthroughs in micro/nano-electronics, information technology, and materials science. Compared to conventional bulk materials, nanomaterials with zero, one, and two dimensional (0D, 1D, and 2D) architectures exhibit unusual physical properties that could dramatically improve the performance of sensors. By integrating high performance sensors with soft and stretchable electronics, research groups are enabling fully-integrated multifunctional sensing systems in skin-worn formats, optimized for managing specific disease models. In this progress report, recent advances in soft wearable sensing systems based on assemblies of 0D, 1D, and 2D nanomaterials, unpackaged integrated circuits, and highly elastic (moisture resistant) encapsulating layers are reviewed. These advanced bioelectronic constructs combine multimodal sensor arrays, data storage elements, wireless data transmission modules, and actuators for continuous monitoring. The soft wearable systems that embody these unusual electronic materials and soft packaging strategies are beginning to impact big data analysis, remote health monitoring, and transdermal drug delivery applications, by transitioning from primary research discoveries to commercial adoption.

    Pressure distribution in tilting and reclining wheelchairs with an air cushion: A pilot study

    No full text
    Study aim: The aim of this study was to determine the optimal angle for maximizing pressure distribution in two types of wheelchairs (tilting and reclining) while using a ROHO cushion, which offers relatively effective pressure distribution

    A Pediatric Case of -related Nephrogenic Syndrome of Inappropriate Antidiuresis

    No full text
    Nephrogenic syndrome of inappropriate antidiuresis (NSIAD) is a rare X-linked genetic condition caused by a gain-of-function mutation of arginine vasopressin receptor 2 gene, AVPR2. We report the case of a male neonate diagnosed with NSIAD based on his DNA sequence of the AVPR2 gene and the clinical course. He demonstrated a complete correction of hyponatremia using oral urea. We suggest that (1) sequencing analysis of the AVPR2 gene ought to be done in newborns with prolonged euvolemic hyponatremia, hypo-osmolality, high urinary sodium and normal/low or undetectable AVP levels, and that (2) oral urea is a safe and effective treatment option in infants diagnosed with NSIAD until the patients are grown-up
    corecore