6 research outputs found

    Photoresponsive Liquid Crystalline Epoxy Networks with Shape Memory Behavior and Dynamic Ester Bonds

    No full text
    Functional polymers are intelligent materials that can respond to a variety of external stimuli. However, these materials have not yet found widespread real world applications because of the difficulties in fabrication and the limited number of functional building blocks that can be incorporated into a material. Here, we demonstrate a simple route to incorporate three functional building blocks (azobenzene chromophores, liquid crystals, and dynamic covalent bonds) into an epoxy-based liquid crystalline network (LCN), in which an azobenzene-based epoxy monomer is polymerized with an aliphatic dicarboxylic acid to create exchangeable ester bonds that can be thermally activated. All three functional building blocks exhibited good compatibility, and the resulting materials exhibits various photomechanical, shape memory, and self-healing properties because of the azobenzene molecules, liquid crystals, and dynamic ester bonds, respectively

    Controlled Shape Memory Behavior of a Smectic Main-Chain Liquid Crystalline Elastomer

    No full text
    A smectic main-chain liquid crystalline elastomer (LCE), with controlled shape memory behavior, is synthesized by polymerizing a biphenyl-based epoxy monomer with an aliphatic carboxylic acid curing agent. Microstructures of the LCEs, including their liquid crystallinity and cross-linking density, are modified by adjusting the stoichiometric ratio of the reactants to tailor the thermomechanical properties and shape memory behavior of the material. Thermal and liquid crystalline properties of the LCEs, characterized using differential scanning calorimetry and dynamic mechanical analysis, and structural analysis, performed using small-angle and wide-angle X-ray scattering, show that liquid crystallinity, cross-linking density, and network rigidity are strongly affected by the stoichiometry of the curing reaction. With appropriate structural modifications it is possible to tune the thermal, dynamic mechanical, and thermomechanical properties as well as the shape memory and thermal degradation behavior of LCEs

    Studies on Supercapacitor Electrode Material from Activated Lignin-Derived Mesoporous Carbon

    No full text
    We synthesized mesoporous carbon from pre-cross-linked lignin gel impregnated with a surfactant as the pore-forming agent and then activated the carbon through physical and chemical methods to obtain activated mesoporous carbon. The activated mesoporous carbons exhibited 1.5- to 6-fold increases in porosity with a maximum Brunauer–Emmett–Teller (BET) specific surface area of 1148 m<sup>2</sup>/g and a pore volume of 1.0 cm<sup>3</sup>/g. Both physical and chemical activation enhanced the mesoporosity along with significant microporosity. Plots of cyclic voltammetric data with the capacitor electrode made from these carbons showed an almost rectangular curve depicting the behavior of ideal double-layer capacitance. Although the pristine mesoporous carbon exhibited a range of surface-area-based capacitance similar to that of other known carbon-based supercapacitors, activation decreased the surface-area-based specific capacitance and enhanced the gravimetric specific capacitance of the mesoporous carbons. A vertical tail in the lower-frequency domain of the Nyquist plot provided additional evidence of good supercapacitor behavior for the activated mesoporous carbons. We have modeled the equivalent circuit of the Nyquist plot with the help of two constant phase elements (CPE). Our work demonstrated that biomass-derived mesoporous carbon materials continue to show potential for use in specific electrochemical applications

    Controlled Assembly of Lignocellulosic Biomass Components and Properties of Reformed Materials

    No full text
    Reforming whole lignocellulosic biomass into value-added materials has yet to be achieved mainly due to the infusible nature of biomass and its recalcitrance to dissolve in common organic solvents. Recently, the solubility of biomass in ionic liquids (ILs) has been explored to develop all-lignocellulosic materials; however, efficient dissolution and therefore production of value-added materials with desired mechanical properties remain a challenge. This article presents an approach to producing high-performance lignocellulosic films from hybrid poplar wood. An autohydrolysis step that removes ≀50% of the hemicellulose fraction is performed to enhance biomass solvation in 1-ethyl-3-methyl imidazolium acetate ([C2mim]­[OAc]). The resulting biomass–IL solution is then cast into free-standing films using different coagulating solvents, yet preserving the polymeric nature of the biomass constituents. Methanol coagulated films exhibit a cocontinuous 3D-network structure with dispersed domains of less than 100 nm. The consolidated films with controllable morphology and structural order demonstrate tensile properties better than those of quasi-isotropic wood. The methods for producing these biomass derivatives have potential for fabricating novel green materials with superior performance from woody and grassy biomass

    Evidence for the Formation of Nitrogen-Rich Platinum and Palladium Nitride Nanoparticles

    No full text
    We report evidence for the formation of nitrogen-rich precious metal nanoparticles (Pt, Pd) prepared by reactive sputtering of the pure metal in a N<sub>2</sub> plasma. The composition of the nanoparticles varies as a function of particle size and growth conditions. For the smallest particles the nitrogen content appears to be as high as 6.7 N atoms for each Pd atom or 5.9 N atoms for each Pt atom whereas bulk films have nominal compositions of Pt<sub>7.3</sub>N and Pd<sub>2.5</sub>N. The unusually large N content in the nanoparticles is balanced with H. The nanoparticles are metastable in air and moisture, slowly decomposing over several years. The catalytic properties of these N-rich nanoparticles were accessed by rotating disk electrode electrochemical studies, the liquid phase oxidation of benzyl alcohol, and gas phase CO oxidation, and support the experimental evidence for the materials composition

    Surface-Induced Orientation Control of CuPc Molecules for the Epitaxial Growth of Highly Ordered Organic Crystals on Graphene

    No full text
    The epitaxial growth and preferred molecular orientation of copper phthalocyanine (CuPc) molecules on graphene has been systematically investigated and compared with growth on Si substrates, demonstrating the role of surface-mediated interactions in determining molecular orientation. X-ray scattering and diffraction, scanning tunneling microscopy, scanning electron microscopy, and first-principles theoretical calculations were used to show that the nucleation, orientation, and packing of CuPc molecules on films of graphene are fundamentally different compared to those grown on Si substrates. Interfacial dipole interactions induced by charge transfer between CuPc molecules and graphene are shown to epitaxially align the CuPc molecules in a face-on orientation in a series of ordered superstructures. At high temperatures, CuPc molecules lie flat with respect to the graphene substrate to form strip-like CuPc crystals with micrometer sizes containing monocrystalline grains. Such large epitaxial crystals may potentially enable improvement in the device performance of organic thin films, wherein charge transport, exciton diffusion, and dissociation are currently limited by grain size effects and molecular orientation
    corecore