4,886 research outputs found

    Key Distillation and the Secret-Bit Fraction

    Full text link
    We consider distillation of secret bits from partially secret noisy correlations P_ABE, shared between two honest parties and an eavesdropper. The most studied distillation scenario consists of joint operations on a large number of copies of the distribution (P_ABE)^N, assisted with public communication. Here we consider distillation with only one copy of the distribution, and instead of rates, the 'quality' of the distilled secret bits is optimized, where the 'quality' is quantified by the secret-bit fraction of the result. The secret-bit fraction of a binary distribution is the proportion which constitutes a secret bit between Alice and Bob. With local operations and public communication the maximal extractable secret-bit fraction from a distribution P_ABE is found, and is denoted by Lambda[P_ABE]. This quantity is shown to be nonincreasing under local operations and public communication, and nondecreasing under eavesdropper's local operations: it is a secrecy monotone. It is shown that if Lambda[P_ABE]>1/2 then P_ABE is distillable, thus providing a sufficient condition for distillability. A simple expression for Lambda[P_ABE] is found when the eavesdropper is decoupled, and when the honest parties' information is binary and the local operations are reversible. Intriguingly, for general distributions the (optimal) operation requires local degradation of the data.Comment: 12 page

    Asymptotic Correlations in Gapped and Critical Topological Phases of 1D Quantum Systems

    Get PDF
    Topological phases protected by symmetry can occur in gapped and---surprisingly---in critical systems. We consider non-interacting fermions in one dimension with spinless time-reversal symmetry. It is known that the phases are classified by a topological invariant ω\omega and a central charge cc. We investigate the correlations of string operators, giving insight into the interplay between topology and criticality. In the gapped phases, these non-local string order parameters allow us to extract ω\omega. Remarkably, ratios of correlation lengths are universal. In the critical phases, the scaling dimensions of these operators serve as an order parameter, encoding ω\omega and cc. We derive exact asymptotics of these correlation functions using Toeplitz determinant theory. We include physical discussion, e.g., relating lattice operators to the conformal field theory. Moreover, we discuss the dual spin chains. Using the aforementioned universality, the topological invariant of the spin chain can be obtained from correlations of local observables.Comment: 35 pages, 5 page appendi

    Evolutionary Inference for Function-valued Traits: Gaussian Process Regression on Phylogenies

    Full text link
    Biological data objects often have both of the following features: (i) they are functions rather than single numbers or vectors, and (ii) they are correlated due to phylogenetic relationships. In this paper we give a flexible statistical model for such data, by combining assumptions from phylogenetics with Gaussian processes. We describe its use as a nonparametric Bayesian prior distribution, both for prediction (placing posterior distributions on ancestral functions) and model selection (comparing rates of evolution across a phylogeny, or identifying the most likely phylogenies consistent with the observed data). Our work is integrative, extending the popular phylogenetic Brownian Motion and Ornstein-Uhlenbeck models to functional data and Bayesian inference, and extending Gaussian Process regression to phylogenies. We provide a brief illustration of the application of our method.Comment: 7 pages, 1 figur

    Holographic graphene in a cavity

    No full text
    The effective strength of EM interactions can be controlled by confining the fields to a cavity and these effects might be used to push graphene into a strongly coupled regime. We study the similar D3/probe D5 system on a compact space and discuss the gravity dual for a cavity between two mirrors. We show that the introduction of a conformal symmetry breaking length scale introduces a mass gap on a single D5 sheet. Bilayer configurations display exciton condensation between the sheets. There is a first order phase transition away from the exciton condensate if a strong enough magnetic field is applied. We finally map out the phase structure of these systems in a cavity with the presence of mirror reflections of the probes - a mass gap may form through exciton condensation with the mirror image

    Highly comparative feature-based time-series classification

    Full text link
    A highly comparative, feature-based approach to time series classification is introduced that uses an extensive database of algorithms to extract thousands of interpretable features from time series. These features are derived from across the scientific time-series analysis literature, and include summaries of time series in terms of their correlation structure, distribution, entropy, stationarity, scaling properties, and fits to a range of time-series models. After computing thousands of features for each time series in a training set, those that are most informative of the class structure are selected using greedy forward feature selection with a linear classifier. The resulting feature-based classifiers automatically learn the differences between classes using a reduced number of time-series properties, and circumvent the need to calculate distances between time series. Representing time series in this way results in orders of magnitude of dimensionality reduction, allowing the method to perform well on very large datasets containing long time series or time series of different lengths. For many of the datasets studied, classification performance exceeded that of conventional instance-based classifiers, including one nearest neighbor classifiers using Euclidean distances and dynamic time warping and, most importantly, the features selected provide an understanding of the properties of the dataset, insight that can guide further scientific investigation
    • …
    corecore