624 research outputs found

    Mitigation of Hardware Trojan Attacks on Networks-on-Chip

    Get PDF
    The Integrated Circuit (IC) design flow follows a global business model. A global business means that the processes in the IC design flow could be outsourced, and consequently security threats have been introduced. Security threats on hardware include side channel analysis, reverse engineering, information leakage, counterfeit chips, and hardware Trojans (HTs).This work mainly focuses on HT attacks, which execute a malicious operation on the system when a trigger condition is met. Networks-on-Chip (NoCs) are a popular communications infrastructure for many-core systems, which have proved to be a more scalable option over the traditional bus interface. However, the high scalability and modularity provided by NoCs have introduced new vulnerabilities in the design, leading to hardware Trojans capable of causing several Denial of Service (DoS) attacks on the network. A 4x4 Mesh-topology NoC with a more robust router microarchitecture is presented with several innovations relative to the baseline. A collaborative dynamic permutation and flow unit (flit) integrity check method is proposed to thwart an attacker from maliciously modifying the flit content in the routers of a NoC. Our method complements other HT detection approaches for the NoC network interfaces. Moreover, we exploit the Physical Unclonable Function (PUF) structure and the traffic routing history to generate a unique key vector for each router to select one of the multiple permutation configurations. Simulation and Field Programmable Gate Array (FPGA) results are compared between the proposed NoC microarchitecture and four other existing solutions found in literature, and it was shown that the proposed method outperforms all of the existing security methods

    The Release: A Thesis

    Get PDF
    Possessing elements of both dark comedy and dramatic suspense, The Release is the story of Sean Coleman, a young, idealistic documentary filmmaker, who, in fighting for his film\u27s release, discovers that his beliefs may not be as strong as his desire to get what he wants. This paper will examine the total production process that went into the development, creation and finalization of this film

    Efficient Constellation-Based Map-Merging for Semantic SLAM

    Full text link
    Data association in SLAM is fundamentally challenging, and handling ambiguity well is crucial to achieve robust operation in real-world environments. When ambiguous measurements arise, conservatism often mandates that the measurement is discarded or a new landmark is initialized rather than risking an incorrect association. To address the inevitable `duplicate' landmarks that arise, we present an efficient map-merging framework to detect duplicate constellations of landmarks, providing a high-confidence loop-closure mechanism well-suited for object-level SLAM. This approach uses an incrementally-computable approximation of landmark uncertainty that only depends on local information in the SLAM graph, avoiding expensive recovery of the full system covariance matrix. This enables a search based on geometric consistency (GC) (rather than full joint compatibility (JC)) that inexpensively reduces the search space to a handful of `best' hypotheses. Furthermore, we reformulate the commonly-used interpretation tree to allow for more efficient integration of clique-based pairwise compatibility, accelerating the branch-and-bound max-cardinality search. Our method is demonstrated to match the performance of full JC methods at significantly-reduced computational cost, facilitating robust object-based loop-closure over large SLAM problems.Comment: Accepted to IEEE International Conference on Robotics and Automation (ICRA) 201

    Complexity Analysis and Efficient Measurement Selection Primitives for High-Rate Graph SLAM

    Get PDF
    Sparsity has been widely recognized as crucial for efficient optimization in graph-based SLAM. Because the sparsity and structure of the SLAM graph reflect the set of incorporated measurements, many methods for sparsification have been proposed in hopes of reducing computation. These methods often focus narrowly on reducing edge count without regard for structure at a global level. Such structurally-naive techniques can fail to produce significant computational savings, even after aggressive pruning. In contrast, simple heuristics such as measurement decimation and keyframing are known empirically to produce significant computation reductions. To demonstrate why, we propose a quantitative metric called elimination complexity (EC) that bridges the existing analytic gap between graph structure and computation. EC quantifies the complexity of the primary computational bottleneck: the factorization step of a Gauss-Newton iteration. Using this metric, we show rigorously that decimation and keyframing impose favorable global structures and therefore achieve computation reductions on the order of r2/9r^2/9 and r3r^3, respectively, where rr is the pruning rate. We additionally present numerical results showing EC provides a good approximation of computation in both batch and incremental (iSAM2) optimization and demonstrate that pruning methods promoting globally-efficient structure outperform those that do not.Comment: Pre-print accepted to ICRA 201

    Gauss-Newton Runge-Kutta Integration for Efficient Discretization of Optimal Control Problems with Long Horizons and Least-Squares Costs

    Full text link
    This work proposes an efficient treatment of continuous-time optimal control problem (OCP) with long horizons and nonlinear least-squares costs. The Gauss-Newton Runge-Kutta (GNRK) integrator is presented which provides a high-order cost integration. Crucially, the Hessian of the cost terms required within an SQP-type algorithm is approximated with a Gauss-Newton Hessian. Moreover, L2 penalty formulations for constraints are shown to be particularly effective for optimization with GNRK. An efficient implementation of GNRK is provided in the open-source software framework acados. We demonstrate the effectiveness of the proposed approach and its implementation on an illustrative example showing a reduction of relative suboptimality by a factor greater than 10 while increasing the runtime by only 10 %.Comment: 7 pages, 3 Figures, submitted to ECC 202

    Finite Elements with Switched Detection for Direct Optimal Control of Nonsmooth Systems with Set-Valued Step Functions

    Full text link
    This paper extends the Finite Elements with Switch Detection (FESD) method [Nurkanovi\'c et al., 2022] to optimal control problems with nonsmooth systems involving set-valued step functions. Logical relations and common nonsmooth functions within a dynamical system can be expressed using linear and nonlinear expressions of the components of the step function. A prominent subclass of these systems are Filippov systems. The set-valued step function can be expressed by the solution map of a linear program, and using its KKT conditions allows one to transform the initial system into an equivalent dynamic complementarity system (DCS). Standard Runge-Kutta (RK) methods applied to DCS have only first-order accuracy. The FESD discretization makes the step sizes degrees of freedom and adds further constraints that ensure exact switch detection to recover the high-accuracy properties that RK methods have for smooth ODEs. All methods and examples in this paper are implemented in the open-source software package NOSNOC.Comment: submitted to CDC202

    Frenet-Cartesian Model Representations for Automotive Obstacle Avoidance within Nonlinear MPC

    Full text link
    In recent years, nonlinear model predictive control (NMPC) has been extensively used for solving automotive motion control and planning tasks. In order to formulate the NMPC problem, different coordinate systems can be used with different advantages. We propose and compare formulations for the NMPC related optimization problem, involving a Cartesian and a Frenet coordinate frame (CCF/ FCF) in a single nonlinear program (NLP). We specify costs and collision avoidance constraints in the more advantageous coordinate frame, derive appropriate formulations and compare different obstacle constraints. With this approach, we exploit the simpler formulation of opponent vehicle constraints in the CCF, as well as road aligned costs and constraints related to the FCF. Comparisons to other approaches in a simulation framework highlight the advantages of the proposed approaches

    Collision Probabilities for Continuous-Time Systems Without Sampling [with Appendices]

    Full text link
    Demand for high-performance, robust, and safe autonomous systems has grown substantially in recent years. Fulfillment of these objectives requires accurate and efficient risk estimation that can be embedded in core decision-making tasks such as motion planning. On one hand, Monte-Carlo (MC) and other sampling-based techniques can provide accurate solutions for a wide variety of motion models but are cumbersome to apply in the context of continuous optimization. On the other hand, "direct" approximations aim to compute (or upper-bound) the failure probability as a smooth function of the decision variables, and thus are widely applicable. However, existing approaches fundamentally assume discrete-time dynamics and can perform unpredictably when applied to continuous-time systems operating in the real world, often manifesting as severe conservatism. State-of-the-art attempts to address this within a conventional discrete-time framework require additional Gaussianity approximations that ultimately produce inconsistency of their own. In this paper we take a fundamentally different approach, deriving a risk approximation framework directly in continuous time and producing a lightweight estimate that actually improves as the discretization is refined. Our approximation is shown to significantly outperform state-of-the-art techniques in replicating the MC estimate while maintaining the functional and computational benefits of a direct method. This enables robust, risk-aware, continuous motion-planning for a broad class of nonlinear, partially-observable systems.Comment: To appear at RSS 202
    corecore