4 research outputs found

    Exploring the Limits of Catalytic Ammonia–Borane Dehydrogenation Using a Bis(<i>N</i>‑heterocyclic carbene) Iridium(III) Complex

    No full text
    Ammonia borane dehydrogenation can be catalyzed by a number of organometallic species. [Ir­(κ<sup>2</sup>-I<sup><i>t</i></sup>Bu)<sub>2</sub>]­[PF<sub>6</sub>] (I<sup><i>t</i></sup>Bu = 1,3-bis­(<i>tert</i>-butyl)­imidazol-2-ylidene) is the most active catalyst for this process that has been reported to date. We explore herein the absolute limits of the use of this and related complexes, including [Ir­(κ<sup>2</sup>-I<sup><i>t</i></sup>Bu)<sub>2</sub>]­[BAr<sup>F</sup><sub>4</sub>], [Ir­(H)<sub>2</sub>(I<sup><i>t</i></sup>Bu)<sub>2</sub>]­[BAr<sup>F</sup><sub>4</sub>], and [Ir­(κ<sup>2</sup>-I<sup><i>t</i></sup>Bu)<sub>2</sub>(NH<sub>3</sub>)]­[BAr<sup>F</sup><sub>4</sub>] (BAr<sup>F</sup><sub>4</sub> = tetrakis­(3,5-bis­(trifluoromethyl)­phenyl)­borate)

    Protonation Studies of a Tungsten Dinitrogen Complex Supported by a Diphosphine Ligand Containing a Pendant Amine

    No full text
    Treatment of <i>trans</i>-[W­(N<sub>2</sub>)<sub>2</sub>(dppe)­(P<sup>Et</sup>N<sup>Me</sup>P<sup>Et</sup>)] (dppe = Ph<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>PPh<sub>2</sub>; P<sup>Et</sup>N<sup>Me</sup>P<sup>Et</sup> = Et<sub>2</sub>PCH<sub>2</sub>N­(Me)­CH<sub>2</sub>PEt<sub>2</sub>) with 3 equiv of tetrafluoroboric acid (HBF<sub>4</sub>·Et<sub>2</sub>O) at −78 °C generated the seven-coordinate tungsten hydride <i>trans</i>-[W­(N<sub>2</sub>)<sub>2</sub>(H)­(dppe)­(P<sup>Et</sup>N<sup>Me</sup>P<sup>Et</sup>)]­[BF<sub>4</sub>]. At higher temperatures, protonation of a pendant amine is also observed, affording <i>trans</i>-[W­(N<sub>2</sub>)<sub>2</sub>(H)­(dppe)­(P<sup>Et</sup>N<sup>Me</sup>(H)­P<sup>Et</sup>)]­[BF<sub>4</sub>]<sub>2</sub>, with formation of the hydrazido complex [W­(NNH<sub>2</sub>)­(dppe)­(P<sup>Et</sup>N<sup>Me</sup>(H)­P<sup>Et</sup>)]­[BF<sub>4</sub>]<sub>2</sub> as a minor product. A similar product mixture was obtained using triflic acid (HOTf). The protonated products are thermally sensitive and do not persist at ambient temperature. Upon acid addition to the carbonyl analogue <i>cis</i>-[W­(CO)<sub>2</sub>(dppe)­(P<sup>Et</sup>N<sup>Me</sup>P<sup>Et</sup>)], the seven-coordinate carbonyl hydride complex <i>trans</i>-[W­(CO)<sub>2</sub>(H)­(dppe)­(P<sup>Et</sup>N<sup>Me</sup>(H)­P<sup>Et</sup>)]­[OTf]<sub>2</sub> was generated. A mixed diphosphine complex without the pendant amine in the ligand backbone, <i>trans</i>-[W­(N<sub>2</sub>)<sub>2</sub>(dppe)­(depp)] (depp = Et<sub>2</sub>P­(CH<sub>2</sub>)<sub>3</sub>PEt<sub>2</sub>), was synthesized and treated with HOTf, selectively generating a hydrazido complex, [W­(NNH<sub>2</sub>)­(OTf)­(dppe)­(depp)]­[OTf]. Computational analysis probed the proton affinity of three sites of protonation in these complexes: the metal, pendant amine, and N<sub>2</sub> ligand. Room-temperature reactions with 100 equiv of HOTf produced NH<sub>4</sub><sup>+</sup> from reduction of the N<sub>2</sub> ligand (electrons come from W). The addition of 100 equiv of HOTf to <i>trans</i>-[W­(N<sub>2</sub>)<sub>2</sub>(dppe)­(P<sup>Et</sup>N<sup>Me</sup>P<sup>Et</sup>)] afforded 0.81 equiv of NH<sub>4</sub><sup>+</sup>, while 0.40 equiv of NH<sub>4</sub><sup>+</sup> was formed upon treatment of <i>trans</i>-[W­(N<sub>2</sub>)<sub>2</sub>(dppe)­(depp)] with HOTf, showing that the complexes containing proton relays produce more products of reduction of N<sub>2</sub>

    Protonation Studies of a Mono-Dinitrogen Complex of Chromium Supported by a 12-Membered Phosphorus Macrocycle Containing Pendant Amines

    No full text
    The reduction of <i>fac</i>-[CrCl<sub>3</sub>­(P<sup>Ph</sup><sub>3</sub>N<sup>Bn</sup><sub>3</sub>)], (<b>1­(Cl</b><sub><b>3</b></sub><b>)</b>), (P<sup>Ph</sup><sub>3</sub>N<sup>Bn</sup><sub>3</sub> = 1,5,9-tribenzyl-3,7,11-triphenyl-1,5,9-triaza-3,7,11-triphosphacyclododecane) with Mg in the presence of dmpe (dmpe = 1,2-bis­(dimethylphosphino)­ethane) affords the first example of a monodinitrogen Cr<sup>0</sup> complex, Cr­(N<sub>2</sub>)­(dmpe)­(P<sup>Ph</sup><sub>3</sub>N<sup>Bn</sup><sub>3</sub>), (<b>2­(N</b><sub><b>2</b></sub><b>)</b>), containing a pentaphosphine coordination environment. <b>2­(N</b><sub><b>2</b></sub><b>)</b> is supported by a unique facially coordinating 12-membered phosphorus macrocycle containing pendant amine groups in the second coordination sphere. Treatment of <b>2­(N<sub>2</sub>)</b> at −78 °C with 1 equiv of [H­(OEt<sub>2</sub>)<sub>2</sub>]­[B­(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] results in protonation of the metal center, generating the seven-coordinate Cr<sup>II</sup>–N<sub>2</sub> hydride complex, [Cr­(H)­(N<sub>2</sub>)­(dmpe)­(P<sup>Ph</sup><sub>3</sub>N<sup>Bn</sup><sub>3</sub>)]­[B­(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>], <b>[2­(H)­(N<sub>2</sub>)]<sup>+</sup></b>. Treatment of <b>2­(<sup>15</sup>N<sub>2</sub>) </b>with excess triflic acid at −50 °C afforded a trace amount of <sup>15</sup>NH<sub>4</sub><sup>+</sup> from the reduction of the coordinated <sup>15</sup>N<sub>2</sub> ligand (electrons originate from Cr). Electronic structure calculations were employed to evaluate the p<i>K</i><sub>a</sub> values of three protonated sites of <b>2­(N</b><sub><b>2</b></sub><b>)</b> (metal center, pendant amine, and N<sub>2</sub> ligand) and were used to predict the thermodynamically preferred Cr-N<sub><i>x</i></sub>H<sub><i>y</i></sub> intermediates in the N<sub>2</sub> reduction pathway for <b>2­(N</b><sub><b>2</b></sub><b>)</b> and the recently published complex <i>trans</i>-[Cr­(N<sub>2</sub>)<sub>2</sub>­(P<sup>Ph</sup><sub>4</sub>N<sup>Bn</sup><sub>4</sub>)] upon the addition of protons and electrons

    Protonation Studies of a Mono-Dinitrogen Complex of Chromium Supported by a 12-Membered Phosphorus Macrocycle Containing Pendant Amines

    No full text
    The reduction of <i>fac</i>-[CrCl<sub>3</sub>­(P<sup>Ph</sup><sub>3</sub>N<sup>Bn</sup><sub>3</sub>)], (<b>1­(Cl</b><sub><b>3</b></sub><b>)</b>), (P<sup>Ph</sup><sub>3</sub>N<sup>Bn</sup><sub>3</sub> = 1,5,9-tribenzyl-3,7,11-triphenyl-1,5,9-triaza-3,7,11-triphosphacyclododecane) with Mg in the presence of dmpe (dmpe = 1,2-bis­(dimethylphosphino)­ethane) affords the first example of a monodinitrogen Cr<sup>0</sup> complex, Cr­(N<sub>2</sub>)­(dmpe)­(P<sup>Ph</sup><sub>3</sub>N<sup>Bn</sup><sub>3</sub>), (<b>2­(N</b><sub><b>2</b></sub><b>)</b>), containing a pentaphosphine coordination environment. <b>2­(N</b><sub><b>2</b></sub><b>)</b> is supported by a unique facially coordinating 12-membered phosphorus macrocycle containing pendant amine groups in the second coordination sphere. Treatment of <b>2­(N<sub>2</sub>)</b> at −78 °C with 1 equiv of [H­(OEt<sub>2</sub>)<sub>2</sub>]­[B­(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] results in protonation of the metal center, generating the seven-coordinate Cr<sup>II</sup>–N<sub>2</sub> hydride complex, [Cr­(H)­(N<sub>2</sub>)­(dmpe)­(P<sup>Ph</sup><sub>3</sub>N<sup>Bn</sup><sub>3</sub>)]­[B­(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>], <b>[2­(H)­(N<sub>2</sub>)]<sup>+</sup></b>. Treatment of <b>2­(<sup>15</sup>N<sub>2</sub>) </b>with excess triflic acid at −50 °C afforded a trace amount of <sup>15</sup>NH<sub>4</sub><sup>+</sup> from the reduction of the coordinated <sup>15</sup>N<sub>2</sub> ligand (electrons originate from Cr). Electronic structure calculations were employed to evaluate the p<i>K</i><sub>a</sub> values of three protonated sites of <b>2­(N</b><sub><b>2</b></sub><b>)</b> (metal center, pendant amine, and N<sub>2</sub> ligand) and were used to predict the thermodynamically preferred Cr-N<sub><i>x</i></sub>H<sub><i>y</i></sub> intermediates in the N<sub>2</sub> reduction pathway for <b>2­(N</b><sub><b>2</b></sub><b>)</b> and the recently published complex <i>trans</i>-[Cr­(N<sub>2</sub>)<sub>2</sub>­(P<sup>Ph</sup><sub>4</sub>N<sup>Bn</sup><sub>4</sub>)] upon the addition of protons and electrons
    corecore