4 research outputs found
Exploring the Limits of Catalytic Ammonia–Borane Dehydrogenation Using a Bis(<i>N</i>‑heterocyclic carbene) Iridium(III) Complex
Ammonia
borane dehydrogenation can be catalyzed by a number of organometallic
species. [IrÂ(κ<sup>2</sup>-I<sup><i>t</i></sup>Bu)<sub>2</sub>]Â[PF<sub>6</sub>] (I<sup><i>t</i></sup>Bu = 1,3-bisÂ(<i>tert</i>-butyl)Âimidazol-2-ylidene) is the most active catalyst
for this process that has been reported to date. We explore herein
the absolute limits of the use of this and related complexes, including
[IrÂ(κ<sup>2</sup>-I<sup><i>t</i></sup>Bu)<sub>2</sub>]Â[BAr<sup>F</sup><sub>4</sub>], [IrÂ(H)<sub>2</sub>(I<sup><i>t</i></sup>Bu)<sub>2</sub>]Â[BAr<sup>F</sup><sub>4</sub>], and
[IrÂ(κ<sup>2</sup>-I<sup><i>t</i></sup>Bu)<sub>2</sub>(NH<sub>3</sub>)]Â[BAr<sup>F</sup><sub>4</sub>] (BAr<sup>F</sup><sub>4</sub> = tetrakisÂ(3,5-bisÂ(trifluoromethyl)Âphenyl)Âborate)
Protonation Studies of a Tungsten Dinitrogen Complex Supported by a Diphosphine Ligand Containing a Pendant Amine
Treatment
of <i>trans</i>-[WÂ(N<sub>2</sub>)<sub>2</sub>(dppe)Â(P<sup>Et</sup>N<sup>Me</sup>P<sup>Et</sup>)] (dppe = Ph<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>PPh<sub>2</sub>; P<sup>Et</sup>N<sup>Me</sup>P<sup>Et</sup> = Et<sub>2</sub>PCH<sub>2</sub>NÂ(Me)ÂCH<sub>2</sub>PEt<sub>2</sub>) with 3 equiv of tetrafluoroboric acid (HBF<sub>4</sub>·Et<sub>2</sub>O) at −78 °C generated the
seven-coordinate tungsten hydride <i>trans</i>-[WÂ(N<sub>2</sub>)<sub>2</sub>(H)Â(dppe)Â(P<sup>Et</sup>N<sup>Me</sup>P<sup>Et</sup>)]Â[BF<sub>4</sub>]. At higher temperatures, protonation of a pendant
amine is also observed, affording <i>trans</i>-[WÂ(N<sub>2</sub>)<sub>2</sub>(H)Â(dppe)Â(P<sup>Et</sup>N<sup>Me</sup>(H)ÂP<sup>Et</sup>)]Â[BF<sub>4</sub>]<sub>2</sub>, with formation of the hydrazido
complex [WÂ(NNH<sub>2</sub>)Â(dppe)Â(P<sup>Et</sup>N<sup>Me</sup>(H)ÂP<sup>Et</sup>)]Â[BF<sub>4</sub>]<sub>2</sub> as a minor product. A similar
product mixture was obtained using triflic acid (HOTf). The protonated
products are thermally sensitive and do not persist at ambient temperature.
Upon acid addition to the carbonyl analogue <i>cis</i>-[WÂ(CO)<sub>2</sub>(dppe)Â(P<sup>Et</sup>N<sup>Me</sup>P<sup>Et</sup>)], the seven-coordinate
carbonyl hydride complex <i>trans</i>-[WÂ(CO)<sub>2</sub>(H)Â(dppe)Â(P<sup>Et</sup>N<sup>Me</sup>(H)ÂP<sup>Et</sup>)]Â[OTf]<sub>2</sub> was generated. A mixed diphosphine complex without the pendant
amine in the ligand backbone, <i>trans</i>-[WÂ(N<sub>2</sub>)<sub>2</sub>(dppe)Â(depp)] (depp = Et<sub>2</sub>PÂ(CH<sub>2</sub>)<sub>3</sub>PEt<sub>2</sub>), was synthesized and treated with HOTf,
selectively generating a hydrazido complex, [WÂ(NNH<sub>2</sub>)Â(OTf)Â(dppe)Â(depp)]Â[OTf].
Computational analysis probed the proton affinity of three sites of
protonation in these complexes: the metal, pendant amine, and N<sub>2</sub> ligand. Room-temperature reactions with 100 equiv of HOTf
produced NH<sub>4</sub><sup>+</sup> from reduction of the N<sub>2</sub> ligand (electrons come from W). The addition of 100 equiv of HOTf
to <i>trans</i>-[WÂ(N<sub>2</sub>)<sub>2</sub>(dppe)Â(P<sup>Et</sup>N<sup>Me</sup>P<sup>Et</sup>)] afforded 0.81 equiv of NH<sub>4</sub><sup>+</sup>, while 0.40 equiv of NH<sub>4</sub><sup>+</sup> was formed upon treatment of <i>trans</i>-[WÂ(N<sub>2</sub>)<sub>2</sub>(dppe)Â(depp)] with HOTf, showing that the complexes
containing proton relays produce more products of reduction of N<sub>2</sub>
Protonation Studies of a Mono-Dinitrogen Complex of Chromium Supported by a 12-Membered Phosphorus Macrocycle Containing Pendant Amines
The reduction of <i>fac</i>-[CrCl<sub>3</sub>Â(P<sup>Ph</sup><sub>3</sub>N<sup>Bn</sup><sub>3</sub>)], (<b>1Â(Cl</b><sub><b>3</b></sub><b>)</b>), (P<sup>Ph</sup><sub>3</sub>N<sup>Bn</sup><sub>3</sub> =
1,5,9-tribenzyl-3,7,11-triphenyl-1,5,9-triaza-3,7,11-triphosphacyclododecane)
with Mg in the presence of dmpe (dmpe = 1,2-bisÂ(dimethylphosphino)Âethane)
affords the first example of a monodinitrogen Cr<sup>0</sup> complex,
CrÂ(N<sub>2</sub>)Â(dmpe)Â(P<sup>Ph</sup><sub>3</sub>N<sup>Bn</sup><sub>3</sub>), (<b>2Â(N</b><sub><b>2</b></sub><b>)</b>), containing a pentaphosphine coordination environment. <b>2Â(N</b><sub><b>2</b></sub><b>)</b> is supported by
a unique facially coordinating 12-membered phosphorus macrocycle containing
pendant amine groups in the second coordination sphere. Treatment
of <b>2Â(N<sub>2</sub>)</b> at −78 °C with 1 equiv
of [HÂ(OEt<sub>2</sub>)<sub>2</sub>]Â[BÂ(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] results in protonation of the metal center, generating
the seven-coordinate Cr<sup>II</sup>–N<sub>2</sub> hydride
complex, [CrÂ(H)Â(N<sub>2</sub>)Â(dmpe)Â(P<sup>Ph</sup><sub>3</sub>N<sup>Bn</sup><sub>3</sub>)]Â[BÂ(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>], <b>[2Â(H)Â(N<sub>2</sub>)]<sup>+</sup></b>. Treatment
of <b>2Â(<sup>15</sup>N<sub>2</sub>) </b>with excess triflic
acid at −50 °C afforded a trace amount of <sup>15</sup>NH<sub>4</sub><sup>+</sup> from the reduction of the coordinated <sup>15</sup>N<sub>2</sub> ligand (electrons originate from Cr). Electronic
structure calculations were employed to evaluate the p<i>K</i><sub>a</sub> values of three protonated sites of <b>2Â(N</b><sub><b>2</b></sub><b>)</b> (metal center, pendant amine,
and N<sub>2</sub> ligand) and were used to predict the thermodynamically
preferred Cr-N<sub><i>x</i></sub>H<sub><i>y</i></sub> intermediates in the N<sub>2</sub> reduction pathway for <b>2Â(N</b><sub><b>2</b></sub><b>)</b> and the recently
published complex <i>trans</i>-[CrÂ(N<sub>2</sub>)<sub>2</sub>Â(P<sup>Ph</sup><sub>4</sub>N<sup>Bn</sup><sub>4</sub>)] upon
the addition of protons and electrons
Protonation Studies of a Mono-Dinitrogen Complex of Chromium Supported by a 12-Membered Phosphorus Macrocycle Containing Pendant Amines
The reduction of <i>fac</i>-[CrCl<sub>3</sub>Â(P<sup>Ph</sup><sub>3</sub>N<sup>Bn</sup><sub>3</sub>)], (<b>1Â(Cl</b><sub><b>3</b></sub><b>)</b>), (P<sup>Ph</sup><sub>3</sub>N<sup>Bn</sup><sub>3</sub> =
1,5,9-tribenzyl-3,7,11-triphenyl-1,5,9-triaza-3,7,11-triphosphacyclododecane)
with Mg in the presence of dmpe (dmpe = 1,2-bisÂ(dimethylphosphino)Âethane)
affords the first example of a monodinitrogen Cr<sup>0</sup> complex,
CrÂ(N<sub>2</sub>)Â(dmpe)Â(P<sup>Ph</sup><sub>3</sub>N<sup>Bn</sup><sub>3</sub>), (<b>2Â(N</b><sub><b>2</b></sub><b>)</b>), containing a pentaphosphine coordination environment. <b>2Â(N</b><sub><b>2</b></sub><b>)</b> is supported by
a unique facially coordinating 12-membered phosphorus macrocycle containing
pendant amine groups in the second coordination sphere. Treatment
of <b>2Â(N<sub>2</sub>)</b> at −78 °C with 1 equiv
of [HÂ(OEt<sub>2</sub>)<sub>2</sub>]Â[BÂ(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] results in protonation of the metal center, generating
the seven-coordinate Cr<sup>II</sup>–N<sub>2</sub> hydride
complex, [CrÂ(H)Â(N<sub>2</sub>)Â(dmpe)Â(P<sup>Ph</sup><sub>3</sub>N<sup>Bn</sup><sub>3</sub>)]Â[BÂ(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>], <b>[2Â(H)Â(N<sub>2</sub>)]<sup>+</sup></b>. Treatment
of <b>2Â(<sup>15</sup>N<sub>2</sub>) </b>with excess triflic
acid at −50 °C afforded a trace amount of <sup>15</sup>NH<sub>4</sub><sup>+</sup> from the reduction of the coordinated <sup>15</sup>N<sub>2</sub> ligand (electrons originate from Cr). Electronic
structure calculations were employed to evaluate the p<i>K</i><sub>a</sub> values of three protonated sites of <b>2Â(N</b><sub><b>2</b></sub><b>)</b> (metal center, pendant amine,
and N<sub>2</sub> ligand) and were used to predict the thermodynamically
preferred Cr-N<sub><i>x</i></sub>H<sub><i>y</i></sub> intermediates in the N<sub>2</sub> reduction pathway for <b>2Â(N</b><sub><b>2</b></sub><b>)</b> and the recently
published complex <i>trans</i>-[CrÂ(N<sub>2</sub>)<sub>2</sub>Â(P<sup>Ph</sup><sub>4</sub>N<sup>Bn</sup><sub>4</sub>)] upon
the addition of protons and electrons