22 research outputs found

    Tracking and Removing Br during the On-Surface Synthesis of a Graphene Nanoribbon

    No full text
    The fabrication of graphene nanoribbons (GNRs) requires a high degree of precision due to the sensitivity of the electronic structure on the edge shape. Using Br-substituted molecular precursors, this atomic precision can be achieved in a thermally induced two-step reaction following Br dissociation on a Au(111) surface. Using DFT, we find evidence that the Br atoms are bound to the intermediate polyanthrylene chains. We employ temperature-programmed desorption to demonstrate the associative desorption of HBr and molecular hydrogen during the final cyclodehydrogenation step of the reaction. Both processes are found to have similar activation barriers. Furthermore, we are able to remove Br atoms from the polyanthrylene chains by providing molecular hydrogen. The subsequent formation of GNR via a cyclodehydrogenation demonstrates that Br does not influence this part of the overall reaction

    Mechanisms of Halogen-Based Covalent Self-Assembly on Metal Surfaces

    No full text
    We computationally study the reaction mechanisms of halogen-based covalent self-assembly, a major route for synthesizing molecular nanostructures and nanographenes on surfaces. Focusing on biphenyl as a small model system, we describe the dehalogenation, recombination, and diffusion processes. The kinetics of the different processes are also investigated, in particular how diffusion and coupling barriers affect recombination rates. Trends across the periodic table are derived from three commonly used close-packed (111) surfaces (Cu, Ag, and Au) and two halogens (Br and I). We show that the halogen atoms can poison the surface, thus hindering long-range ordering of the self-assembled structures. Finally, we present core-level shifts of the relevant carbon and halogen atoms, to provide reference data for reliably detecting self-assembly without the need for atomic-resolution scanning tunneling microscopy

    CO<sub>2</sub> Hydrogenation with High Selectivity by Single Bi Atoms on MXenes Enabled by a Concerted Mechanism

    No full text
    Developing efficient catalysts for the capture and direct conversion of CO2 into various chemicals is essential to alleviate CO2 emissions and minimize the negative environmental effects of fossil fuels. Combining density functional theory calculations and microkinetic analysis, we propose that single Bi atoms supported on V2CO2 MXenes (Bi@V2CO2) are promising single-atom catalysts (SAC) for CO2 hydrogenation. The catalytic performance of Bi SACs is ensured by the stable single-atom dispersion of Bi atoms on V2CO2 and enhanced adsorption of CO2. Of importance, Bi@V2CO2 exhibits remarkable selectivity toward the synthesis of formic acid (HCOOH), in which the main competing reaction, namely, the reverse water gas shift (RWGS) and the formation of CO, is strictly prohibited. In contrast to conventional Cu or In2O3 catalysts, CO2 hydrogenation exhibits a unique mechanism on Bi@V2CO2, in which the formic acid is directly generated via a concerted pathway. As a result, the formation of both intermediate HCOO and COOH is prevented, leading to high selectivity (nearly 100%) toward HCOOH on Bi@V2CO2. Moreover, analysis of the kinetic behavior suggests that the stabilization of HCOOH adsorption would be an effective approach to promote catalyst performance toward methanol synthesis

    Intermolecular Hybridization Creating Nanopore Orbital in a Supramolecular Hydrocarbon Sheet

    No full text
    Molecular orbital engineering is a key ingredient for the design of organic devices. Intermolecular hybridization promises efficient charge carrier transport but usually requires dense packing for significant wave function overlap. Here we use scanning tunneling spectroscopy to spatially resolve the electronic structure of a surface-confined nanoporous supramolecular sheet of a prototypical hydrocarbon compound featuring terminal alkyne (−CCH) groups. Surprisingly, localized nanopore orbitals are observed, with their electron density centered in the cavities surrounded by the functional moieties. Density functional theory calculations reveal that these new electronic states originate from the intermolecular hybridization of six in-plane π-orbitals of the carbon–carbon triple bonds, exhibiting significant electronic splitting and an energy downshift of approximately 1 eV. Importantly, these nanopore states are distinct from previously reported interfacial states. We unravel the underlying connection between the formation of nanopore orbital and geometric arrangements of functional groups, thus demonstrating the generality of applying related orbital engineering concepts in various types of porous organic structures

    Unraveling the Mechanism of the Covalent Coupling Between Terminal Alkynes on a Noble Metal

    No full text
    The mechanism of the newly reported route for surface-assisted covalent coupling of terminal alkynes on Ag(111) is unraveled by density functional theory based transition state calculations. We illustrate that the reaction path is fundamentally different from the classical coupling schemes in wet chemistry. It is initiated by the covalent coupling between two molecules instead of single-molecule dehydrogenation. The silver substrate is found to play an important role stabilizing the intermediate species by chemical bonds, although it is hardly active electronically in the actual coupling step. The dimer intermediate is concluded to undergo two subsequent dehydrogenation processes expected to be rate-limiting according to the comparatively large barriers, which origin is discussed

    Topological Dynamics in Supramolecular Rotors

    No full text
    Artificial molecular switches, rotors, and machines are set to establish design rules and applications beyond their biological counterparts. Herein we exemplify the role of noncovalent interactions and transient rearrangements in the complex behavior of supramolecular rotors caged in a 2D metal–organic coordination network. Combined scanning tunneling microscopy experiments and molecular dynamics modeling of a supramolecular rotor with respective rotation rates matching with 0.2 kcal mol<sup>–1</sup> (9 meV) precision, identify key steps in collective rotation events and reconfigurations. We notably reveal that stereoisomerization of the chiral trimeric units entails topological isomerization whereas rotation occurs in a topology conserving, two-step asynchronous process. In supramolecular constructs, distinct displacements of subunits occur inducing a markedly lower rotation barrier as compared to synchronous mechanisms of rigid rotors. Moreover, the chemical environment can be instructed to control the system dynamics. Our observations allow for a definition of mechanical cooperativity based on a significant reduction of free energy barriers in supramolecules compared to rigid molecules

    Adsorption of Aromatic and Anti-Aromatic Systems on Graphene through π−π Stacking

    No full text
    The adsorption of neutral (poly)-aromatic, antiaromatic, and more generally π-conjugated systems on graphene is studied as a prototypical case of π−π stacking. To account for dispersive interactions, we compare the recent van der Waals density functional (vdw-DF) with three semiempirical corrections to density functional theory and two empirical force fields. The adsorption energies of the molecules binding to graphene predicted by the vdw-DF were found to be in excellent agreement with temperature desorption experiments reported in literature, whereas the results of the remaining functionals and force fields only preserve the correct trends. The comparison of the dispersive versus electrostatic contributions to the total binding energies in the aromatic and antiaromatic systems suggests that π−π interactions can be regarded as being prevalently dispersive in nature at large separations, whereas close to the equilibrium bonding distance, it is a complex interplay between dispersive and electrostatic Coulombic interactions. Moreover our results surprisingly indicate that the magnitude of π−π interactions normalized both per number of total atoms and carbon atoms increases significantly with the relative number of hydrogen atoms in the studied systems

    Synthesis of Extended Graphdiyne Wires by Vicinal Surface Templating

    No full text
    Surface-assisted covalent synthesis currently evolves into an important approach for the fabrication of functional nanostructures at interfaces. Here, we employ scanning tunneling microscopy to investigate the homocoupling reaction of linear, terminal alkyne-functionalized polyphenylene building-blocks on noble metal surfaces under ultrahigh vacuum. On the flat Ag(111) surface, thermal activation triggers a variety of side-reactions resulting in irregularly branched polymeric networks. Upon alignment along the step-edges of the Ag(877) vicinal surface drastically improves the chemoselectivity of the linking process permitting the controlled synthesis of extended-graphdiyne wires with lengths reaching 30 nm. The ideal hydrocarbon scaffold is characterized by density functional theory as a 1D, direct band gap semiconductor material with both HOMO and LUMO-derived bands promisingly isolated within the electronic structure. The templating approach should be applicable to related organic precursors and different reaction schemes thus bears general promise for the engineering of novel low-dimensional carbon-based materials

    Steering On-Surface Self-Assembly of High-Quality Hydrocarbon Networks with Terminal Alkynes

    No full text
    The two-dimensional (2D) self-assembly of 1,3,5-triethynyl-benzene (TEB) and <i>de novo</i> synthesized 1,3,5-tris-(4-ethynylphenyl)­benzene (Ext-TEB) on Ag(111) was investigated by means of scanning tunneling microscopy (STM) under ultrahigh vacuum (UHV) conditions. Both 3-fold symmetric molecules form long-range ordered nanoporous networks featuring organizational chirality, mediated by novel, planar 6-fold cyclic binding motifs. The key interaction for the expression of the motifs is identified as C–H···π bonding. For Ext-TEB, an additional open-porous phase exists with the 3-fold motif. The nature of the underlying noncovalent bonding schemes is thoroughly analyzed by density functional theory (DFT) calculations including van der Waals corrections. The comparison of calculations focusing on isolated 2D molecular sheets and those including the substrate reveals the delicate balance between the attractive molecule–molecule interaction, mediated by both the terminal alkyne and the phenyl groups, and the molecule–substrate interaction responsible for the commensurability and the regularity of the networks. Comparison with bulk structures of similar molecules suggests that these strictly planar cyclic binding motifs appear only in 2D environments

    Synthesis of Surface Covalent Organic Frameworks via Dimerization and Cyclotrimerization of Acetyls

    No full text
    The formation of additional phenyl rings on surfaces is of particular interest because it allows for the building-up of surface covalent organic frameworks. In this work, we show for the first time that the cyclotrimerization of acetyls to aromatics provides a promising approach to 2D conjugated covalent networks on surfaces under ultrahigh vacuum. With the aid of scanning tunneling microscopy, we have systematically studied the reaction pathways and the products. With the combination of density functional theory calculations and X-ray photoemission spectroscopy, the surface-assisted reaction mechanism, which is different from that in solution, was explored
    corecore