82 research outputs found
Occurrence and formation of disinfection by-products in the swimming pool environment: A critical review
Disinfection of water for human use is essential to protect against microbial disease; however, disinfection also leads to formation of disinfection by-products (DBPs), some of which are of health concern. From a chemical perspective, swimming pools are a complex matrix, with continual addition of a wide range of natural and anthropogenic chemicals via filling waters, disinfectant addition, pharmaceuticals and personal care products and human body excretions. Natural organic matter, trace amounts of DBPs and chlorine or chloramines may be introduced by the filling water, which is commonly disinfected distributed drinking water. Chlorine and/or bromine is continually introduced via the addition of chemical disinfectants to the pool. Human body excretions (sweat, urine and saliva) and pharmaceuticals and personal care products (sunscreens, cosmetics, hair products and lotions) are introduced by swimmers. High addition of disinfectant leads to a high formation of DBPs from reaction of some of the chemicals with the disinfectant. Swimming pool air is also of concern as volatile DBPs partition into the air above the pool. The presence of bromine leads to the formation of a wide range of bromo- and bromo/chloro-DBPs, and Br-DBPs are more toxic than their chlorinated analogues. This is particularly important for seawater-filled pools or pools using a bromine-based disinfectant. This review summarises chemical contaminants and DBPs in swimming pool waters, as well as in the air above pools. Factors that have been found to affect DBP formation in pools are discussed. The impact of the swimming pool environment on human health is reviewed
Disinfection by-products from halogenation of aqueous solutions of terpenoids
We report the formation of trihalomethanes and other disinfection by-products from four polyfunctional terpenoids during simulated chlorination of natural waters. Complex suites of products were identified by closed loop stripping analysis (CLSA)/gas chromatography-mass spectrometry (GC-MS) from halogenation of b-carotene and retinol. b-Ionone appeared to be a key intermediate in the halogenation of b-carotene and retinol, reacting further under the reaction conditions to produce trans-b-ionone-5,6-epoxide and b-cyclocitral. Halogenation of the four terpenoids also produced trihalomethanes (THMs), most likely through haloform reaction on methyl ketone groups within many of the intermediates. Since halogenation of retinol produced a significant quantity of THMs at a slow reaction rate, retinol-based structures may possibly contribute to the slow reacting phase of THM formation in natural waters. Two polyhydroxyphenol model compounds were halogenated for comparison. The only products identified by CLSA/GC-MS from halogenation of 40,5,7- trihydroxyflavanone and ellagic acid were THMs. 40,5,7-Trihydroxyflavanone rapidly produced THMs, with an extremely high molar yield (94%) at pH 7. Terpenoids of the b-ionone and retinol type should be considered to be significant THM precursors, while 40,5,7-trihydroxyflavanone has been shown to be an extremely significant THM precursor, potentially present within natural organic matter in water treatment processes and distribution system
Powdered activated carbon coupled with enhanced coagulation for natural organic matter removal and disinfection by-product control: Application in a Western Australian water treatment plant
The removal of organic precursors of disinfection by-products (DBPs), i.e. natural organic matter (NOM), prior to disinfection and distribution is considered as the most effective approach to minimise the formation of DBPs. This study investigated the impact of the addition of powdered activated carbon (PAC) to an enhanced coagulation treatment process at an existing water treatment plant on the efficiency of NOM removal, the disinfection behaviour of the treated water, and the water quality in the distribution system. This is the first comprehensive assessment of the efficacy of plant-scale application of PAC combined with enhanced coagulation on an Australian source water. As a result of the PAC addition, the removal of NOM improved by 70%, which led to a significant reduction (80–95%) in the formation of DBPs. The water quality in the distribution system also improved, indicated by lower concentrations of DBPs in the distribution system and better maintenance of disinfectant residual at the extremities of the distribution system.The efficacy of the PAC treatment for NOM removal was shown to be a function of the characteristics of the NOM and the quality of the source water, as well as the PAC dose. PAC treatment did not have the capacity to remove bromide ion, resulting in the formation of more brominated DBPs. Since brominated DBPs have been found to be more toxic than their chlorinated analogues, their preferential formation upon PAC addition must be considered, especially in source waters containing high concentrations of bromide
Techno-economic and Environmental Implications of the Use of a Closed Loop Water Recycling System in Qatar
This paper presents the environmental and economic benefits from the use of potable water from a desalination plant, and treated sewage effluent (TSE) for non-potable reuse, in Lusail, Doha. This newly built city plans to use TSE for a large portion (98 %) of its non-domestic applications instead of discharging TSE to the ocean. It was estimated that about 140,112 m3/d desalinated water will be produced for potable water supply and 93,236 m3/day of TSE will be produced from a sewage treatment plant (STP) for use in district cooling systems and in the irrigation of local landscapes, lawns, and pocket gardens. Less than 2.5 % of water demand for non-domestic applications (i.e. irrigation of lawns for water features) will need to be met by potable water. There are significant sustainability benefits associated with the use of TSE in a water scarce and fast growing region like Qatar. A life cycle assessment analysis has been carried out to determine the greenhouse gas emissions, embodied energy consumption and cost savings associated with the recycling of wastewater in Lusail
Simultaneous analysis of 10 trihalomethanes at nanogram per liter levels in water using solid-phase microextraction and gas chromatography mass-spectrometry
Trihalomethanes are predominantly formed during disinfection of water via reactions of the oxidant with natural organic matter. Even though chlorinated and brominated trihalomethanes are the most widespread organic contaminants in drinking water, when iodide is present in raw water iodinated trihalomethanes can also be formed. The formation of iodinated trihalomethanes can lead to taste and odor problems and is a potential health concern since they have been reported to be more toxic than their brominated or chlorinated analogs. Currently, there is no published standard analytical method for I-THMs in water. The analysis of 10 trihalomethanes in water samples in a single run is challenging because the iodinated trihalomethanes are found at very low concentrations (ng/L range), while the regulated chlorinated and brominated trihalomethanes are present at much higher concentrations (above μg/L). An automated headspace solid-phase microextraction technique, with a programmed temperature vaporizer inlet coupled with gas chromatography-mass spectrometry, was developed for routine analysis of 10 trihalomethanes i.e. bromo-, chloro- and iodo-trihalomethanes in water samples. The carboxen/polydimethylsiloxane/divinylbenzene fiber was found to be the most suitable. The optimization, linearity range, accuracy and precision of the method are discussed. The limits of detection range from 1 ng/L to 20 ng/L for iodoform and chloroform, respectively. Matrix effects in treated groundwater, surfacewater, seawater, and secondary wastewater were investigated and it was shown that the method is suitable for the analysis of trace levels of iodinated trihalomethanes in a wide range of waters.The method developed in the present study has the advantage of being rapid, simple and sensitive. A survey conducted throughout various process stages in an advanced water recycling plant showed the presence of iodinated trihalomethanes at ng/L levels
Chlorination of Amino Acids: Reaction Pathways and Reaction Rates
Chlorination of amino acids can result in the formation of organic monochloramines or organic dichloramines, depending on the chlorine to amino acid ratio (Cl:AA). After formation, organic chloramines degrade into aldehydes, nitriles and N-chloraldimines. In this paper, the formation of organic chloramines from chlorination of lysine, tyrosine and valine were investigated. Chlorination of tyrosine and lysine demonstrated that the presence of a reactive secondary group can increase the Cl:AA ratio required for the formation of N,N-dichloramines, and potentially alter the reaction pathways between chlorine and amino acids, resulting in the formation of unexpected by-products. In a detailed investigation, we report rate constants for all reactions in the chlorination of valine, for the first time, using experimental results and modelling. At Cl:AA = 2.8, the chlorine was found to first react quickly with valine (5.4x104 M-1 s-1) to form N-monochlorovaline, with a slower subsequent reaction with N-monochlorovaline to form N,N-dichlorovaline (4.9x102 M-1 s-1), although some N-monochlorovaline degraded into isobutyraldehyde (1.0x10-4 s-1). The N,N-dichlorovaline then competitively degraded into isobutyronitrile (1.3x10-4 s-1) and N-chloroisobutyraldimine (1.2x10-4 s-1). In conventional drinking water disinfection, N-chloroisobutyraldimine can potentially be formed in concentrations higher than its odour threshold concentration, resulting in aesthetic challenges and an unknown health risk
Formation and control of nitrogenous DBPs from Western Australian source waters: Investigating the impacts of high nitrogen and bromide concentrations
We studied the formation of four nitrogenous DBPs (N-DBPs) classes (haloacetonitriles, halonitromethanes, haloacetamides, and N-nitrosamines), as well as trihalomethanes and total organic halogen (TOX), after chlorination or chloramination of source waters. We also evaluated the relative and additive toxicity of N-DBPs and water treatment options for minimisation of N-DBPs. The formation of halonitromethanes, haloacetamides, and N-nitrosamines was higher after chloramination and positively correlated with dissolved organic nitrogen or total nitrogen. N-DBPs were major contributors to the toxicity of both chlorinated and chloraminated waters. The strong correlation between bromide concentration and the overall calculated DBP additive toxicity for both chlorinated and chloraminated source waters demonstrated that formation of brominated haloacetonitriles was the main contributor to toxicity. Ozone–biological activated carbon treatment was not effective in removing N-DBP precursors. The occurrence and formation of N-DBPs should be investigated on a case-by-case basis, especially where advanced water treatment processes are being considered to minimise their formation in drinking waters, and where chloramination is used for final disinfection
Halogen-specific total organic halogen analysis: Assessment by recovery of total bromine
Determination of halogen-specific total organic halogen (TOX) is vital for studies of disinfection of waters containing bromide, since total organic bromine (TOBr) is likely to be more problematic than total organic chlorine. Here, we present further halogen-specific TOX method optimisation and validation, focusing on measurement of TOBr. The optimised halogen-specific TOX method was validated based on the recovery of model compounds covering different classes of disinfection by-products (haloacetic acids, haloacetonitriles, halophenols and halogenated benzenes) and the recovery of total bromine (mass balance of TOBr and bromide concentrations) during disinfection of waters containing dissolved organic matter and bromide. The validation of a halogen-specific TOX method based on the mass balance of total bromine has not previously been reported. Very good recoveries of organic halogen from all model compounds were obtained, indicating high or complete conversion of all organic halogen in the model compound solution through to halide in the absorber solution for ion chromatography analysis. The method was also successfully applied to monitor conversion of bromide to TOBr in a groundwater treatment plant. An excellent recovery (101%) of total bromine was observed from the raw water to the post-chlorination stage. Excellent recoveries of total bromine (92%–95%) were also obtained from chlorination of a synthetic water containing dissolved organic matter and bromide, demonstrating the validity of the halogen-specific TOX method for TOBr measurement. The halogen-specific TOX method is an important tool to monitor and better understand the formation of halogenated organic compounds, in particular brominated organic compounds, in drinking water systems
A review of the determination of organic compounds in Bayer process liquors
Bayer process liquors present a difficult and complex matrix to the analytical chemist, and the history of the application of modern analytical techniques to this problem is a case study in innovation. All Bayer process liquors contain organic compounds, in amounts varying from traces to several grams per litre. The total organic carbon content of Bayer liquors may be less than 5 g/L up to as much as 40 g/L. The presence of these organic impurities is of concern to Bayer technologists because they can have significant impacts on the economics of the process and the quality of the product. This review examines the history and current state-of-the-art of the analysis of organics in Bayer process liquors, and provides guidance on the applicable techniques matched to a comprehensive list of the compounds most likely to be present
- …