3 research outputs found

    Coupled heat transfer and phase transformations of dual-phase steel in coil cooling

    No full text
    Abstract Dual-phase steels are generally used in the car industry due to high tensile strength and good formability, which are obtained by a mixture of bainite and ferrite phases. This microstructure is achieved through slow rate coil cooling. However, the manufacturing of dual-phase steels introduces various challenges such as the instability of the cold rolling process. An important factor affecting this is the non-uniform coil cooling of a hot rolled strip. In coil cooling the cooling rates are not controlled and there are different thermal contacts during coil conveyance causing unequal cooling of the steel coil. Unequal cooling rates lead to non-uniform coil cooling, producing irregular phase transformations on different sides of the coil, which causes periodical variations of the phase fractions in the steel strip. Varying phase fractions cause thickness deviations in the strip during the cold rolling process. A three-dimensional transient heat transfer finite element model was developed and used for modeling the complete coil conveyance chain and coil field cooling of the coil on an industrial scale. A coupled phase transformation model is implemented as a subroutine into the finite element model for calculating the resulting phase fractions. It was found that the different thermal contacts during the coil conveyance produce uneven cooling rates causing length- and widthwise variations in the phase fractions. The heat transfer model is validated by comparing temperature profiles between the simulated and measured coil edges. The phase transformation model is fitted into experimental data and verification is carried out in industrial conditions by comparing the modeled phase fractions and test samples from a cooled and unwound steel coil

    Direct magnetic-field dependence of NMR chemical shift

    No full text
    Abstract Nuclear shielding and chemical shift are considered independent of the magnetic-field strength. Ramsey proposed on theoretical grounds in 1970 that this may not be valid for heavy nuclei. Here we present experimental evidence for the direct field dependence of shielding, using 59Co shielding in Co(acac)3 [tris(acetylacetonate)cobalt(III)] as an example. We carry out NMR experiments in four field strengths for this low-spin diamagnetic Co(III) complex, which features a very large and negative nuclear shielding constant of the central Co nucleus. This is due to a magnetically accessible, low-energy eg ← t2g orbital excitation of the d6 system. The experiments result in temperature-dependent magnetic-field dependence of −5.7 to −5.2 ppb T−2 of the 59Co shielding constant, arising from the direct modification of the electron cloud of the complex by the field. First-principles multiconfigurational non-linear response theory calculations verify the sign and order of magnitude of the experimental results
    corecore