572 research outputs found

    Health impacts of ambient biomass smoke in Tasmania, Australia

    Get PDF
    The island state of Tasmania has marked seasonal variations of fine particulate matter (PM2.5) concentrations related to wood heating during winter, planned forest fires during autumn and spring, and bushfires during summer. Biomass smoke causes considerable health harms and associated costs. We estimated the historical health burden from PM2.5 attributable to wood heater smoke (WHS) and landscape fire smoke (LFS) in Tasmania between 2010 and 2019. We calculated the daily population level exposure to WHS- and LFS-related PM2.5 and estimated the number of cases and health costs due to premature mortality, cardiorespiratory hospital admissions, and asthma emergency department (ED) visits. We estimated 69 deaths, 86 hospital admissions, and 15 asthma ED visits, each year, with over 74% of impacts attributed to WHS. Average yearly costs associated with WHS were of AUD293millionandAUD 293 million and AUD 16 million for LFS. The latter increased up to more than AUD$ 34 million during extreme bushfire seasons. This is the first study to quantify the health impacts attributable to biomass smoke for Tasmania. We estimated substantial impacts, which could be reduced through replacing heating technologies, improving fire management, and possibly implementing integrated strategies. This would most likely produce important and cost-effective health benefits

    Using digital technology to protect health in prolonged poor air quality episodes: a case study of the AirRater App during the Australian 2019ā€“20 fires

    Get PDF
    In the southern hemisphere summer of 2019ā€“20, Australia experienced its most severe bushfire season on record. Smoke from fires affected 80% of the population, with large and prolonged exceedances of the Australian National Air Quality Standard for fine particulate matter (PM2.5) recorded in all major population centers. We examined if AirRater, a free smartphone app that reports air quality and tracks user symptoms in near realā€time, assisted those populations to reduce their smoke exposure and protect their health. We distributed an online survey to over 13,000 AirRater users to assess how they used this information during the 2019-20 bushfire season, and why it was helpful to aid decisionā€making in reducing personal smoke exposure. We received responses from 1732 users (13.3%). Respondents reported the app was highly useful, supporting informed decisionā€making regarding daily activities during the smokeā€affected period. Commonly reported activities supported by information provided through the app were staying inside (76%), rescheduling or planning outdoor activities (64%), changing locations to less affected areas (29%) and informing decisions on medication use (15%). Innovative and easyā€toā€use smartphone apps such as AirRater, that provide individualā€level and locationā€specific data, can enable users to reduce their exposure to environmental hazards and therefore protect their health

    Is remaining indoors an effective way of reducing exposure to fine particulate matter during biomass burning events?

    Get PDF
    Bushfires, prescribed burns, and residential wood burning are significant sources of fine particles (aerodynamic diameter 2.5) affecting the health and well-being of many communities. Despite the lack of evidence, a common public health recommendation is to remain indoors, assuming that the home provides a protective barrier against ambient PM2.5. The study aimed to assess to what extent houses provide protection against peak concentrations of outdoor PM2.5 and whether remaining indoors is an effective way of reducing exposure to PM2.5. The effectiveness of this strategy was evaluated by conducting simultaneous week-long indoor and outdoor measurements of PM2.5 at 21 residences in regional areas of Victoria, Australia. During smoke plume events, remaining indoors protected residents from peak outdoor PM2.5 concentrations, but the level of protection was highly variable, ranging from 12% to 76%. Housing stock (e.g., age of the house) and ventilation (e.g., having windows/doors open or closed) played a significant role in the infiltration of outdoor PM2.5 indoors. The results also showed that leaving windows and doors closed once the smoke plume abates trapped PM2.5 indoors and increased indoor exposure to PM2.5. Furthermore, for approximately 50% of households, indoor sources such as cooking activities, smoking, and burning candles or incense contributed significantly to indoor PM2.5. Implications: Smoke from biomass burning sources can significantly impact on communities. Remaining indoors with windows and doors closed is a common recommendation by health authorities to minimize exposures to peak concentrations of fine particles during smoke plume events. Findings from this study have shown that the protection from fine particles in biomass burning smoke is highly variable among houses, with information on housing age and ventilation status providing an approximate assessment on the protection of a house. Leaving windows closed once a smoke plume abates traps particles indoors and increases exposures

    Smoke pollution must be part of the savanna fire management equation: a case study from Darwin, Australia

    Get PDF
    Savanna fire management is a topic of global debate, with early dry season burning promoted as a large-scale emissions reduction opportunity. To date, discussions have centred on carbon abatement efficacy, biodiversity and cultural benefits and/or risks. Here we use a case study of Darwin, Australia to highlight smoke pollution as another critical consideration. Smoke pollution from savanna fires is a major public health issue, yet absent so far from discussions of program design. Here, we assess the likely impacts of increased early dry season burning on smoke pollution in Darwin between 2004 and 2019, spanning the introduction and expansion of carbon abatement programs. We found increased smoke pollution in the early dry season but little change in the late dry season, contributing to a net annual increase in air quality standard exceedances. Geospatial analysis suggests this relates to increased burning in the path of early dry season trade winds. This study highlights the complex health trade-offs involved with any large-scale prescribed burning, including for carbon abatement

    The 2020 special report of the MJAā€“Lancet Countdown on health and climate change: lessons learnt from Australia's "Black Summer"

    Get PDF
    The MJA-Lancet Countdown on health and climate change was established in 2017, and produced its first Australian national assessment in 2018 and its first annual update in 2019. It examines indicators across five broad domains: climate change impacts, exposures and vulnerability; adaptation, planning and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement. In the wake of the unprecedented and catastrophic 2019-20 Australian bushfire season, in this special report we present the 2020 update, with a focus on the relationship between health, climate change and bushfires, highlighting indicators that explore these linkages. In an environment of continuing increases in summer maximum temperatures and heatwave intensity, substantial increases in both fire risk and population exposure to bushfires are having an impact on Australia's health and economy. As a result of the "Black Summer" bushfires, the monthly airborne particulate matter less than 2.5Ā Ī¼m in diameter (PM2.5 ) concentrations in New South Wales and the Australian Capital Territory in December 2019 were the highest of any month in any state or territory over the period 2000-2019 at 26.0Ā Ī¼g/m3 and 71.6Ā Ī¼g/m3 respectively, and insured economic losses were $2.2 billion. We also found growing awareness of and engagement with the links between health and climate change, with a 50% increase in scientific publications and a doubling of newspaper articles on the topic in Australia in 2019 compared with 2018. However, despite clear and present need, Australia still lacks a nationwide adaptation plan for health. As Australia recovers from the compounded effects of the bushfires and the coronavirus disease 2019 (COVID-19) pandemic, the health profession has a pivotal role to play. It is uniquely suited to integrate the response to these short term threats with the longer term public health implications of climate change, and to argue for the economic recovery from COVID-19 to align with and strengthen Australia's commitments under the Paris Agreement

    Did fine particulate matter from the summer 2016 landscape fires in Tasmania increase emergency ambulance dispatches? a case crossover analysis

    Get PDF
    During summer in early 2016, over 70 landscape fires in Tasmania (Australia) caused several severe episodes of fire smoke across the island state. To assess the health impact of the fire smoke, a case crossover analysis was performed, which measured the association between increased concentrations of PM2.5 and emergency ambulance dispatches (EAD) from 1 January to 31 March 2016. Control days were matched by latitude and longitude, day of the week and calendar month. Exposure data were obtained from air quality monitoring stations at lag times of 1ā€“48 h and for the 24-h mean on the same day and 1-day lag. Positive associations were observed between an increase of 10 Āµg/m3 in PM2.5 and EAD for stroke on the same day (OR 1.10, 95% CI 1.02ā€“1.19) and at 1-day lag (OR 1.10, 95% CI 1.02ā€“1.18). Furthermore, there were non-significant increases in breathing problems (OR 1.04, 95% CI 1.00ā€“1.08) and diabetic problems (OR 1.11, 95% CI 0.99ā€“1.22) at 1-day lag. The EAD for all causes were not increased. These findings will be used for ambulance service planning and public health risk communication in future landscape fire events
    • ā€¦
    corecore