14,045 research outputs found
An assessment of transport coefficient approximations used in galactic heavy ion shielding calculations
An energy-dependent, perturbation expansion solution for heavy ion transport in one dimension is used to perform depth-dose calculations for 670/MeV nucleon Ne-20 beams incident upon a thick water target. Comparisons of predictions obtained by using typical energy-independent approximations and those obtained with fully energy-dependent input parameters are made. It is found that the calculated doses are underestimated when the energy-independent input approximations are used. The major source of error, however, is the lack of charge and mass conservation in the Silberberg-Tsao fragmentation parameters
Preliminary estimates of radiation exposures for manned interplanetary missions from anomalously large solar flare events
Preliminary estimates of radiation exposures for manned interplanetary missions resulting from anomalously large solar flare events are presented. The calculations use integral particle fluences for the February 1956, November 1960, and August 1972 events as inputs into the Langley Research Center nucleon transport code BRYNTRN. This deterministic code transports primary and secondary nucleons (protons and neutrons) through any number of layers of target material of arbitrary thickness and composition. Contributions from target nucleus fragmentation and recoil are also included. Estimates of 5 cm depth doses and dose equivalents in tissue are presented behind various thicknesses of aluminum, water, and composite aluminum/water shields for each of the three solar flare events
Solar-flare shielding with Regolith at a lunar-base site
The Langley high energy nucleon transport computer code BRYNTRN is used to predict time-integrated radiation dose levels at the lunar surface due to high proton flux from solar flares. The study addresses the shielding requirements for candidate lunar habitat configurations necessary to protect crew members from these large and unpredictable radiation fluxes. Three solar proton events have been analyzed, and variations in radiation intensity in a shield medium due to the various primary particle energy distributions are predicted. Radiation dose predictions are made for various slab thicknesses of a lunar soil model. Results are also presented in the form of dose patterns within specific habitat configurations shielded with lunar material
A benchmark for galactic cosmic ray transport codes
A nontrivial analytic benchmark solution for galactic cosmic ray transport is presented for use in transport code validation. Computational accuracy for a previously-developed cosmic ray transport code is established to within one percent by comparison with this exact benchmark. Hence, solution accuracy for the transport problem is mainly limited by inaccuracies in the input spectra, input interaction databases, and the use of a straight ahead/velocity-conserving approximation
Geometric model from microscopic theory for nuclear absorption
A parameter-free geometric model for nuclear absorption is derived herein from microscopic theory. The expression for the absorption cross section in the eikonal approximation, taken in integral form, is separated into a geometric contribution that is described by an energy-dependent effective radius and two surface terms that cancel in an asymptotic series expansion. For collisions of light nuclei, an expression for the effective radius is derived from harmonic oscillator nuclear density functions. A direct extension to heavy nuclei with Woods-Saxon densities is made by identifying the equivalent half-density radius for the harmonic oscillator functions. Coulomb corrections are incorporated, and a simplified geometric form of the Bradt-Peters type is obtained. Results spanning the energy range from 1 MeV/nucleon to 1 GeV/nucleon are presented. Good agreement with experimental results is obtained
Cellular repair/misrepair track model
A repair/misrepair cell kinetics model is superimposed onto the track structure model of Katz to provide for a repair mechanism. The model is tested on the repair-dependent data of Yang et al. and provides an adequate description of that data. The misrepair rate determines the maximum relative biological effectiveness (RBE), but similar results could arise from indirect X-ray lethality not include in the present model
A study of the generation of linear energy transfer spectra for space radiations
The conversion of particle-energy spectra into a linear energy transfer (LET) distribution is a guide in assessing biologically significant components. The mapping of LET to energy is triple valued and can be defined only on open subintervals. A well-defined numerical procedure is found to allow generation of LET spectra on the open subintervals that are integrable in spite of their singular nature
Preliminary estimates of galactic cosmic ray exposures for manned interplanetary missions
Preliminary estimates of radiation exposures resulting from galactic cosmic rays are presented for interplanetary missions. The calculations use the Naval Research Laboratory cosmic ray transport code. The heavy ion portion of the transport code can be used with any number of layers of target material, consisting of up to five different constituents per layer. The nucleonic portion of the transport code can be used with any number of layers of target material of arbitrary composition except hydrogen. Calculated galactic cosmic ray particle fluxes, doses, and dose equivalents behind various thicknesses of aluminum shielding are presented for solar maximum and solar minimum periods
- …