33 research outputs found

    Prevenção do câncer de colo uterino

    Get PDF
    O câncer do colo uterino constitui um grave problema de saúde pública, atingindo todas as camadas sociais e regiões geoeconômicas do país. Definido como afecção progressiva, o câncer de colo uterino é caracterizado por alterações intra-epiteliais cervicais, que podem se desenvolver para um estágio invasivo em longo prazo, tendo etapas bem definidas e de lenta evolução, sendo que este tipo de câncer permite sua interrupção a partir de um diagnóstico precoce e do tratamento oportuno que poderá apresentar custos reduzidos. Assim, as medidas de prevenção são consideradas de suma importância e envolvem o rastreamento de lesões na população sintomática e assintomática, podendo ser identificado o grau das mesmas e o tratamento ser adequado. Neste estudo foi realizado uma revisão narrativa, de trabalhos vinculados a Biblioteca Virtual de Saúde, realizados no período de 2000 a 2012 com o objetivo de discorrer sobre aspectos epidemiológicos, fisiopatológicos e de prevenção do câncer de colo uterino. O PSF se torna, cada vez mais, um instrumento de estratégia no combate ao câncer do colo do útero. Os profissionais devem aproveitar todas as oportunidades de contato com as mulheres para reforçar orientações, sanar dúvidas, conhecimentos, direitos em relação a sua saúde, sendo assim, atenção especial à educação em saúde. Há ainda muitas barreiras que impedem as mulheres ao acesso a educação e promoção da saúde, principalmente quanto ao câncer de colo de útero. Este fato mostra que as campanhas de prevenção e ou detecção precoce desta doença não têm sido bem sucedidas, apesar do amplo conhecimento que este tipo de câncer continua sendo uma séria ameaça para a população brasileira

    Data and sources

    No full text
    Data were compiled from a range of published sources on interference competition and body size. See 'Read me' file for more details and full references

    The scaling parameter for ε has been highly variable through time.

    No full text
    <p>Each panel shows the running mean of ε (slope of the regression of log<i>E</i> on log<i>N</i>, see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0130547#sec002" target="_blank">methods</a>) with a 19-year window smoothed over 20 years. The light brown bar shows the confidence range of mean slope over the entire time period. <b>A</b>. For the world, ε showed a pronounced shift from a little over 2 to 1 from the 1960’s to the 1980’s, with the beginning of this decline coinciding with the peak world population growth rate in 1963 [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0130547#pone.0130547.ref009" target="_blank">9</a>]. <b>B</b>. For England and Wales, ε was highly variable, plummeting during the Little Ice Age and during World War I and the Oil Crises of the 1970s. <b>C</b>. Sweden showed an increase in ε after the Industrial Revolution but also showed a decline in ε during both world wars. D. The United States showed a steadily increasing e until about the 1960s when it showed a severe drop coinciding with the Oil Crises of the 1970s.</p

    Relationship between energy use (W) and population size for the world, the United States, Sweden, and England and Wales through time.

    No full text
    <p>The relationships are highly variable, but overall, the slopes are greater than one (that is, the exponent in the power-law function relating energy use to population size overall), indicating support for a positive feedback between population size and energy use. Lines with slopes of one (ε = 1) are shown as reference. The black lines show overall fits and gray shaded regions show 95% confidence intervals on the regression lines.</p

    Appendix B. Details, sources, and fits for functional responses of mammalian carnivores.

    No full text
    Details, sources, and fits for functional responses of mammalian carnivores

    Supplement 1. Data for the functional response of five mammalian carnivores preying on mammals.

    No full text
    <h2>File List</h2><p> <a href="data.txt">data.txt</a> (md5: f0a0210e8d4c2774c5e13b6f2e64e84f) </p><h2>Description</h2><p>The data.txt file is a tab-delimited file. It contains raw data on foraging rates and prey density. For citations see <a href="appendix-B.htm">Appendix B</a>.</p> <p>Column definitions</p> <div> <ol> <li>Species</li> <li>Source, indexed in Appendix B.</li> <li>Prey density (individuals / ha)</li> <li>Predator kill rate (kills / day / consumer)</li> </ol> </div

    State-space for the steady-state population-level biomass from seven additional studies in the literature, in comparison with the results of this study.

    No full text
    <p>Three studies showed suppressed levels of function (#s 3, 7, and 8), one study showed elevated function consistent with classic resource-partitioning arguments (#6), and three studies showed increases in function for one species relative to its alone state, suggestive of a mutualism or other type of positive interaction (#s 2, 4, and 5). The studies were, with species 1 (on x-axis) listed first 1) <i>Colpidium striatum</i> versus <i>Paramecium aurelia</i> (this study, marked with solid circle), 2) <i>Blepharisma americana</i> versus <i>Paramecium tetraurelia </i><a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0030081#pone.0030081-Fox1" target="_blank">[38]</a>, 3) <i>Colpidium striatum</i> versus <i>Tetrahymena thermophyla </i><a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0030081#pone.0030081-Fox1" target="_blank">[38]</a>, 4) <i>Chilomonas paramecium</i> and <i>Colpidium striatum</i> (low nutrient levels; <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0030081#pone.0030081-Balciunas1" target="_blank">[37]</a>, 5) <i>Chilomonas paramecium</i> and <i>Colpidium striatum</i> (high nutrient levels; <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0030081#pone.0030081-Balciunas1" target="_blank">[37]</a>, 6) <i>Colpidium striatum</i> versus <i>Paramecium tetraurelia</i> (22°C; <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0030081#pone.0030081-Jiang2" target="_blank">[22]</a>, 7) <i>Colpidium striatum</i> versus <i>Paramecium tetraurelia</i> (30°C; <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0030081#pone.0030081-Jiang2" target="_blank">[22]</a>, and 8) <i>Paramecium aurelia</i> versus <i>Paramecium caudatum </i><a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0030081#pone.0030081-Vandermeer2" target="_blank">[24]</a>.</p

    The Rate-Size Trade-Off Structures Intraspecific Variation in <i>Daphnia ambigua</i> Life History Parameters

    Get PDF
    <div><p>The identification of trade-offs is necessary for understanding the evolution and maintenance of diversity. Here we employ the supply-demand (SD) body size optimization model to predict a trade-off between asymptotic body size and growth rate. We use the SD model to quantitatively predict the slope of the relationship between asymptotic body size and growth rate under high and low food regimes and then test the predictions against observations for <i>Daphnia ambigua</i>. Close quantitative agreement between observed and predicted slopes at both food levels lends support to the model and confirms that a ‘rate-size’ trade-off structures life history variation in this population. In contrast to classic life history expectations, growth and reproduction were positively correlated after controlling for the rate-size trade-off. We included 12 <i>Daphnia</i> clones in our study, but clone identity explained only some of the variation in life history traits. We also tested the hypothesis that growth rate would be positively related to intergenic spacer length (i.e. the growth rate hypothesis) across clones, but we found that clones with intermediate intergenic spacer lengths had larger asymptotic sizes and slower growth rates. Our results strongly support a resource-based optimization of body size following the SD model. Furthermore, because some resource allocation decisions necessarily precede others, understanding interdependent life history traits may require a more nested approach.</p></div

    Graphical representation of the supply-demand model.

    No full text
    <p>Organisms grow from their natal size, <i>m</i><sub>b</sub>, to their asymptotic or adult size, <i>m</i><sub>∞</sub>, along the demand (<i>D</i>) curve. The optimal size is where supply (<i>S</i>) equals demand (see text). To maximize resource use, organisms may trade off asymptotic size with mass-specific demand. <i>Daphnia</i> may vary in mass-specific demand due to genetic factors such as intergenic spacer (IGS) length, generating changes in asymptotic size because of the supply constraint.</p
    corecore