2 research outputs found

    Datasheet1_A multidisciplinary approach to severe bronchopulmonary dysplasia is associated with resolution of pulmonary hypertension.docx

    No full text
    ObjectiveTo describe our multidisciplinary bronchopulmonary dysplasia (BPD) consult team's systematic approach to BPD associated pulmonary hypertension (PH), to report our center outcomes, and to evaluate clinical associations with outcomes.Study designRetrospective cohort of 60 patients with BPD-PH who were referred to the Seattle Children's Hospital BPD team from 2018 to 2020. Patients with critical congenital heart disease were excluded. Demographics, comorbidities, treatments, closure of hemodynamically relevant intracardiac shunts, and clinical outcomes including time to BPD-PH resolution were reviewed.ResultsMedian gestational age of the 60 patients was 25 weeks (IQR: 24–26). 20% were small for gestational age (SGA), 65% were male, and 25% received a tracheostomy. With aggressive cardiopulmonary management including respiratory support optimization, patent ductus arteriosus (PDA) and atrial septal defect (ASD) closure (40% PDA, 5% ASD, 3% both), and limited use of pulmonary vasodilators (8%), all infants demonstrated resolution of PH during the follow-up period, including three (5%) who later died from non-BPD-PH morbidities. Neither SGA status nor the timing of PH diagnosis (ConclusionOur multidisciplinary, systematic approach to BPD-PH management was associated with complete resolution of PH with lower mortality despite less sildenafil use than reported in comparable cohorts. Unique features of our approach included aggressive PDA and ASD device closure and rare initiation of sildenafil only after lack of BPD-PH improvement with respiratory support optimization and diagnostic confirmation by cardiac catheterization.</p

    Amphiphilic polymer-coated CdSe/ZnS quantum dots induce pro-inflammatory cytokine expression in mouse lung epithelial cells and macrophages

    No full text
    <p>Quantum dots (Qdots) are semiconductor nanoparticles with size-tunable fluorescence capabilities with diverse applications. Qdots typically contain cadmium or other heavy metals, hence raising concerns of their potential toxicity, especially in occupational settings where inhalation of nanomaterials may increase the risk of lung disease. Accordingly, we assessed the effects of tri-<i>n</i>-octylphosphine oxide, poly(maleic anhydride-<i>alt</i>-1-tetradecene) (TOPO-PMAT) coated CdSe/ZnS Qdots on mouse lung epithelial cells and macrophages. Mouse tracheal epithelial cells (MTEC), grown as organotypic cultures, bone marrow-derived macrophages (BMDM), and primary alveolar macrophages (AM) were derived from C57BL/6J or A/J mice and treated with TOPO-PMAT CdSe/ZnS Qdots (10–160 nM) for up to 24 h. Cadmium analysis showed that Qdots remained in the apical compartment of MTEC cultures, whereas they were avidly internalized by AM and BMDM, which did not differ between strains. In MTEC, Qdots selectively induced expression (mRNA and protein) of neutrophil chemokines CXCL1 and CXCL2 but only low to no detectable levels of other factors assessed. In contrast, 4 h exposure to Qdots markedly increased expression of CXCL1, IL6, IL12, and other pro-inflammatory factors in BMDM. Higher inflammatory response was seen in C57BL/6J than in A/J BMDM. Similar expression responses were observed in AM, although overall levels were less robust than in BMDM. MTEC from A/J mice were more sensitive to Qdot pro-inflammatory effects while macrophages from C57BL/6J mice were more sensitive. These findings suggest that patterns of Qdot-induced pulmonary inflammation are likely to be cell-type specific and genetic background dependent.</p
    corecore