1,638 research outputs found
SONTRAC—A low background, large area solar neutron spectrometer
SONTRAC is a scintillating fiber neutron detector designed to measure solar flare neutrons from a balloon or spacecraft platform. The instrument is comprised of alternating orthogonal planes of scintillator fibers viewed by photomultiplier tubes and image intensifier/CCD camera optics. It operates by tracking the paths of recoil protons from the double scatter of 20 to 200 MeV neutrons off hydrogen in the plastic scintillator, thereby providing the necessary information to determine the incident neutron direction and energy. SONTRAC is also capable of detecting and measuring high-energy gamma rays \u3e20 MeV as a “solid-state spark chamber.” The self-triggering and track imaging features of a prototype for tracking in two dimensions have been demonstrated in calibrations with cosmic-ray muons, 14 to ∼65 MeV neutrons and ∼20 MeV protons
Development of a Hard X-Ray Polarimeter for Astrophysics
We have been developing a Compton scatter polarimeter for measuring the linear polarization of hard X-rays (100-300 keV) from astrophysical sources. A laboratory prototype polarimeter has been used to successfully demonstrate the reliability of our Monte Carlo simulation code and to demonstrate our ability to generate a polarized photon source in the lab. Our design concept places a self-containedpolarimeter module on the front-end of a a 5-inch position sensitive PMT (PSPMT). We are currently working on the fabrication of a science model based on this PSPMT concept. Although the emphasis of our development effort is towards measuring hard X-rays from solar flares, our design has the advantage that it is sensitive over a rather large field-of-view (\u3e1 steradian), a feature that makes it especially attractive for γ-ray burst studie
Development of a hard X-ray polarimeter for astrophysics
We have been developing a Compton scatter polarimeter for measuring the linear polarization of hard X-rays (100-300 keV) from astrophysical sources. A laboratory prototype polarimeter has been used to successfully demonstrate the reliability of our Monte Carlo simulation code and to demonstrate our ability to generate a polarized photon source in the lab. Our design concept places a self-containedpolarimeter module on the front-end of a a 5-inch position sensitive PMT (PSPMT). We are currently working on the fabrication of a science model based on this PSPMT concept. Although the emphasis of our development effort is towards measuring hard X-rays from solar flares, our design has the advantage that it is sensitive over a rather large field-of-view (\u3e1 steradian), a feature that makes it especially attractive for γ-ray burst studies
A hard X-ray solar flare polarimeter design based on scintillating fibers
We have developed a design for a Compton scatter polarimeter to measure the polarization of hard X-rays (50–300 keV) from solar flares. The modular design is based on an annular array of scintillating fibers coupled to a 5-inch position-sensitive PMT. Incident photons scatter from the fiber array into a small array of NaI detectors located at the center of the annulus. The location of the interactions in both the fiber array and in the NaI array can be used to measure the linear polarization of the incident flux. This compact design may be well-suited to a variety of astrophysical applications. An extensive series of Monte Carlo simulations has been performed to characterize this design
New Accounting Guidance For Business Combinations
The Financial Accounting Standards Board (FASB) issued Statement of Financial Accounting Standards (SFAS) No. 141 Business Combinations in June 2001. SFAS 141 supersedes Accounting Principles Board (APB) Opinion No. 16 Business Combinations and SFAS No. 38 Accounting for Preacquisition Contingencies of Purchased Enterprises. APB Opinion 16 created two acceptable methods of accounting for a business combination, the purchase and the pooling of interests methods. These two different methods often resulted in very different financial results for economically similar transactions
The MASSIVE Survey - I. A Volume-Limited Integral-Field Spectroscopic Study of the Most Massive Early-Type Galaxies within 108 Mpc
Massive early-type galaxies represent the modern-day remnants of the earliest
major star formation episodes in the history of the universe. These galaxies
are central to our understanding of the evolution of cosmic structure, stellar
populations, and supermassive black holes, but the details of their complex
formation histories remain uncertain. To address this situation, we have
initiated the MASSIVE Survey, a volume-limited, multi-wavelength,
integral-field spectroscopic (IFS) and photometric survey of the structure and
dynamics of the ~100 most massive early-type galaxies within a distance of 108
Mpc. This survey probes a stellar mass range M* > 10^{11.5} Msun and diverse
galaxy environments that have not been systematically studied to date. Our
wide-field IFS data cover about two effective radii of individual galaxies, and
for a subset of them, we are acquiring additional IFS observations on
sub-arcsecond scales with adaptive optics. We are also acquiring deep K-band
imaging to trace the extended halos of the galaxies and measure accurate total
magnitudes. Dynamical orbit modeling of the combined data will allow us to
simultaneously determine the stellar, black hole, and dark matter halo masses.
The primary goals of the project are to constrain the black hole scaling
relations at high masses, investigate systematically the stellar initial mass
function and dark matter distribution in massive galaxies, and probe the
late-time assembly of ellipticals through stellar population and kinematical
gradients. In this paper, we describe the MASSIVE sample selection, discuss the
distinct demographics and structural and environmental properties of the
selected galaxies, and provide an overview of our basic observational program,
science goals and early survey results.Comment: 19 pages, 14 figures. ApJ (2014) vol. 795, in pres
The MASSIVE Survey II: Stellar Population Trends Out to Large Radius in Massive Early Type Galaxies
We examine stellar population gradients in ~100 massive early type galaxies
spanning 180 < sigma* < 370 km/s and M_K of -22.5 to -26.5 mag, observed as
part of the MASSIVE survey (Ma et al. 2014). Using integral-field spectroscopy
from the Mitchell Spectrograph on the 2.7m telescope at McDonald Observatory,
we create stacked spectra as a function of radius for galaxies binned by their
stellar velocity dispersion, stellar mass, and group richness. With excellent
sampling at the highest stellar mass, we examine radial trends in stellar
population properties extending to beyond twice the effective radius (~2.5
R_e). Specifically, we examine trends in age, metallicity, and abundance ratios
of Mg, C, N, and Ca, and discuss the implications for star formation histories
and elemental yields. At a fixed physical radius of 3-6 kpc (the likely size of
the galaxy cores formed at high redshift) stellar age and [alpha/Fe] increase
with increasing sigma* and depend only weakly on stellar mass, as we might
expect if denser galaxies form their central cores earlier and faster. If we
instead focus on 1-1.5 R_e, the trends in abundance and abundance ratio are
washed out, as might be expected if the stars at large radius were accreted by
smaller galaxies. Finally, we show that when controlling for \sigmastar, there
are only very subtle differences in stellar population properties or gradients
as a function of group richness; even at large radius internal properties
matter more than environment in determining star formation history.Comment: 17 pages, 9 figures, accepted by ApJ; resubmitted with updated
reference
Prototype for SONTRAC: a scintillating plastic fiber detector for solar neutron spectroscopy
We report the scientific motivation for and performance measurements of a prototype detector system for SONTRAC, a solar neutron tracking experiment designed to study high- energy solar flare processes. The full SONTRAC instrument will measure the energy and direction of 20 to 200 MeV neutrons by imaging the ionization tracks of the recoil protons in a densely packed bundle of scintillating plastic fibers. The prototype detector consists of a 12.7 mm square bundle of 250 micrometer scintillating plastic fibers, 10 cm long. A photomultiplier detects scintillation light from one end of the fiber bundle and provides a detection trigger to an image intensifier/CCD camera system at the opposite end. The image of the scintillation light is recorded. By tracking the recoil protons from individual neutrons the kinematics of the scattering are determined, providing a high signal to noise measurement. The predicted energy resolution is 10% at 20 MeV, improving with energy. This energy resolution translates into an uncertainty in the production time of the neutron at the Sun of 30 s for a 20 MeV neutron, also improving with energy. A SONTRAC instrument will also be capable of detecting and measuring high-energy gamma rays greater than 20 MeV as a \u27solid-state spark chamber.\u27 The self-triggering and track imaging features of the prototype are demonstrated with cosmic ray muons and 14 MeV neutrons. Design considerations for a space flight instrument are presented
A prototype for SONTRAC, a scintillating plastic fiber tracking detector for neutron imaging and spectroscopy
We report on tests of a prototype detector system designed to perform imaging and spectroscopy on 20 to 250 MeV neutrons. Although developed for the study of high-energy solar flare processes, the detection techniques employed for SONTRAC, the SOlar Neutron TRACking experiment, can be applied to measurements in a variety of disciplines including atmospheric physics, radiation therapy and nuclear materials monitoring. The SONTRAC instrument measures the energy and direction ofneutrons by detecting double neutron-proton scatters and recording images of the ionization tracks of the recoil protons in a densely packed bundle of scintillating plastic fibers stacked in orthogonal layers. By tracking the recoil protons from individual neutrons, the kinematics of the scatter are determined. This directional information results in a high signal to noise measurement. SONTRAC is also capable of detecting and measuring high-energy gamma rays \u3e20 MeV as a “solid-state spark chamber”. The self-triggering and track imaging features of a prototype for tracking in two dimensions are demonstrated in calibrations with cosmic-ray muons, 14 to ~65 MeV neutrons and ~20 MeV protons
- …