1,638 research outputs found

    SONTRAC—A low background, large area solar neutron spectrometer

    Get PDF
    SONTRAC is a scintillating fiber neutron detector designed to measure solar flare neutrons from a balloon or spacecraft platform. The instrument is comprised of alternating orthogonal planes of scintillator fibers viewed by photomultiplier tubes and image intensifier/CCD camera optics. It operates by tracking the paths of recoil protons from the double scatter of 20 to 200 MeV neutrons off hydrogen in the plastic scintillator, thereby providing the necessary information to determine the incident neutron direction and energy. SONTRAC is also capable of detecting and measuring high-energy gamma rays \u3e20 MeV as a “solid-state spark chamber.” The self-triggering and track imaging features of a prototype for tracking in two dimensions have been demonstrated in calibrations with cosmic-ray muons, 14 to ∼65 MeV neutrons and ∼20 MeV protons

    Development of a Hard X-Ray Polarimeter for Astrophysics

    Get PDF
    We have been developing a Compton scatter polarimeter for measuring the linear polarization of hard X-rays (100-300 keV) from astrophysical sources. A laboratory prototype polarimeter has been used to successfully demonstrate the reliability of our Monte Carlo simulation code and to demonstrate our ability to generate a polarized photon source in the lab. Our design concept places a self-containedpolarimeter module on the front-end of a a 5-inch position sensitive PMT (PSPMT). We are currently working on the fabrication of a science model based on this PSPMT concept. Although the emphasis of our development effort is towards measuring hard X-rays from solar flares, our design has the advantage that it is sensitive over a rather large field-of-view (\u3e1 steradian), a feature that makes it especially attractive for γ-ray burst studie

    Development of a hard X-ray polarimeter for astrophysics

    Get PDF
    We have been developing a Compton scatter polarimeter for measuring the linear polarization of hard X-rays (100-300 keV) from astrophysical sources. A laboratory prototype polarimeter has been used to successfully demonstrate the reliability of our Monte Carlo simulation code and to demonstrate our ability to generate a polarized photon source in the lab. Our design concept places a self-containedpolarimeter module on the front-end of a a 5-inch position sensitive PMT (PSPMT). We are currently working on the fabrication of a science model based on this PSPMT concept. Although the emphasis of our development effort is towards measuring hard X-rays from solar flares, our design has the advantage that it is sensitive over a rather large field-of-view (\u3e1 steradian), a feature that makes it especially attractive for γ-ray burst studies

    A hard X-ray solar flare polarimeter design based on scintillating fibers

    Get PDF
    We have developed a design for a Compton scatter polarimeter to measure the polarization of hard X-rays (50–300 keV) from solar flares. The modular design is based on an annular array of scintillating fibers coupled to a 5-inch position-sensitive PMT. Incident photons scatter from the fiber array into a small array of NaI detectors located at the center of the annulus. The location of the interactions in both the fiber array and in the NaI array can be used to measure the linear polarization of the incident flux. This compact design may be well-suited to a variety of astrophysical applications. An extensive series of Monte Carlo simulations has been performed to characterize this design

    New Accounting Guidance For Business Combinations

    Get PDF
    The Financial Accounting Standards Board (FASB) issued Statement of Financial Accounting Standards (SFAS) No. 141 Business Combinations in June 2001.  SFAS 141 supersedes Accounting Principles Board (APB) Opinion No. 16 Business Combinations and SFAS No. 38 Accounting for Preacquisition Contingencies of Purchased Enterprises.  APB Opinion 16 created two acceptable methods of accounting for a business combination, the purchase and the pooling of interests methods.  These two different methods often resulted in very different financial results for economically similar transactions

    The MASSIVE Survey - I. A Volume-Limited Integral-Field Spectroscopic Study of the Most Massive Early-Type Galaxies within 108 Mpc

    Full text link
    Massive early-type galaxies represent the modern-day remnants of the earliest major star formation episodes in the history of the universe. These galaxies are central to our understanding of the evolution of cosmic structure, stellar populations, and supermassive black holes, but the details of their complex formation histories remain uncertain. To address this situation, we have initiated the MASSIVE Survey, a volume-limited, multi-wavelength, integral-field spectroscopic (IFS) and photometric survey of the structure and dynamics of the ~100 most massive early-type galaxies within a distance of 108 Mpc. This survey probes a stellar mass range M* > 10^{11.5} Msun and diverse galaxy environments that have not been systematically studied to date. Our wide-field IFS data cover about two effective radii of individual galaxies, and for a subset of them, we are acquiring additional IFS observations on sub-arcsecond scales with adaptive optics. We are also acquiring deep K-band imaging to trace the extended halos of the galaxies and measure accurate total magnitudes. Dynamical orbit modeling of the combined data will allow us to simultaneously determine the stellar, black hole, and dark matter halo masses. The primary goals of the project are to constrain the black hole scaling relations at high masses, investigate systematically the stellar initial mass function and dark matter distribution in massive galaxies, and probe the late-time assembly of ellipticals through stellar population and kinematical gradients. In this paper, we describe the MASSIVE sample selection, discuss the distinct demographics and structural and environmental properties of the selected galaxies, and provide an overview of our basic observational program, science goals and early survey results.Comment: 19 pages, 14 figures. ApJ (2014) vol. 795, in pres

    The MASSIVE Survey II: Stellar Population Trends Out to Large Radius in Massive Early Type Galaxies

    Full text link
    We examine stellar population gradients in ~100 massive early type galaxies spanning 180 < sigma* < 370 km/s and M_K of -22.5 to -26.5 mag, observed as part of the MASSIVE survey (Ma et al. 2014). Using integral-field spectroscopy from the Mitchell Spectrograph on the 2.7m telescope at McDonald Observatory, we create stacked spectra as a function of radius for galaxies binned by their stellar velocity dispersion, stellar mass, and group richness. With excellent sampling at the highest stellar mass, we examine radial trends in stellar population properties extending to beyond twice the effective radius (~2.5 R_e). Specifically, we examine trends in age, metallicity, and abundance ratios of Mg, C, N, and Ca, and discuss the implications for star formation histories and elemental yields. At a fixed physical radius of 3-6 kpc (the likely size of the galaxy cores formed at high redshift) stellar age and [alpha/Fe] increase with increasing sigma* and depend only weakly on stellar mass, as we might expect if denser galaxies form their central cores earlier and faster. If we instead focus on 1-1.5 R_e, the trends in abundance and abundance ratio are washed out, as might be expected if the stars at large radius were accreted by smaller galaxies. Finally, we show that when controlling for \sigmastar, there are only very subtle differences in stellar population properties or gradients as a function of group richness; even at large radius internal properties matter more than environment in determining star formation history.Comment: 17 pages, 9 figures, accepted by ApJ; resubmitted with updated reference

    Prototype for SONTRAC: a scintillating plastic fiber detector for solar neutron spectroscopy

    Get PDF
    We report the scientific motivation for and performance measurements of a prototype detector system for SONTRAC, a solar neutron tracking experiment designed to study high- energy solar flare processes. The full SONTRAC instrument will measure the energy and direction of 20 to 200 MeV neutrons by imaging the ionization tracks of the recoil protons in a densely packed bundle of scintillating plastic fibers. The prototype detector consists of a 12.7 mm square bundle of 250 micrometer scintillating plastic fibers, 10 cm long. A photomultiplier detects scintillation light from one end of the fiber bundle and provides a detection trigger to an image intensifier/CCD camera system at the opposite end. The image of the scintillation light is recorded. By tracking the recoil protons from individual neutrons the kinematics of the scattering are determined, providing a high signal to noise measurement. The predicted energy resolution is 10% at 20 MeV, improving with energy. This energy resolution translates into an uncertainty in the production time of the neutron at the Sun of 30 s for a 20 MeV neutron, also improving with energy. A SONTRAC instrument will also be capable of detecting and measuring high-energy gamma rays greater than 20 MeV as a \u27solid-state spark chamber.\u27 The self-triggering and track imaging features of the prototype are demonstrated with cosmic ray muons and 14 MeV neutrons. Design considerations for a space flight instrument are presented

    A prototype for SONTRAC, a scintillating plastic fiber tracking detector for neutron imaging and spectroscopy

    Get PDF
    We report on tests of a prototype detector system designed to perform imaging and spectroscopy on 20 to 250 MeV neutrons. Although developed for the study of high-energy solar flare processes, the detection techniques employed for SONTRAC, the SOlar Neutron TRACking experiment, can be applied to measurements in a variety of disciplines including atmospheric physics, radiation therapy and nuclear materials monitoring. The SONTRAC instrument measures the energy and direction ofneutrons by detecting double neutron-proton scatters and recording images of the ionization tracks of the recoil protons in a densely packed bundle of scintillating plastic fibers stacked in orthogonal layers. By tracking the recoil protons from individual neutrons, the kinematics of the scatter are determined. This directional information results in a high signal to noise measurement. SONTRAC is also capable of detecting and measuring high-energy gamma rays \u3e20 MeV as a “solid-state spark chamber”. The self-triggering and track imaging features of a prototype for tracking in two dimensions are demonstrated in calibrations with cosmic-ray muons, 14 to ~65 MeV neutrons and ~20 MeV protons
    corecore