2 research outputs found

    Prediction of advanced colonic neoplasm in symptomatic patients: a scoring system to prioritize colonoscopy (COLONOFIT study).

    Get PDF
    Background: Fast-track colonoscopy to detect patients with colorectal cancer based on high-risk symptoms is associated with low sensitivity and specificity. The aim was to derive a predictive score of advanced colonic neoplasia in symptomatic patients in fast-track programs. Methods: All patients referred for fast-track colonoscopy were evaluated. Faecal immunological haemoglobin test (3 samples; positive> 4 μg Hb/g), and a survey to register clinical variables of interest were performed. Colorectal cancer and advanced adenoma were considered as advanced colonic neoplasia. A sample size of 600 and 500 individuals were calculated for each phase 1 and phase 2 of the study, respectively (Phase 1, derivation and Phase 2, validation cohort). A Bayesian logistic regression analysis was used to derive a predictive score. Results: 1495 patients were included. Age (OR, 21), maximum faecal-Hb value (OR, 2.3), and number of positive samples (OR, 28) presented the highest ORs predictive of advanced colonic neoplasia. The additional significant predictive variables adjusted for age and faecal-Hb variables in Phase 1 were previous colonoscopy (last 5 years) and smoking (no, ex/active). With these variables a predictive score of advanced colonic neoplasia was derived. Applied to Phase 2, patients with a Score > 20 had an advanced colonic neoplasia probability of 66% (colorectal cancer, 32%), while those with a Score ≤ 10, a probability of 10% (colorectal cancer, 1%). Prioritizing patients with Score > 10, 49.4% of patients would be referred for fast-track colonoscopy, diagnosing 98.3% of colorectal cancers and 77% of advanced adenomas. Conclusions: A scoring system was derived and validated to prioritize fast-track colonoscopies according to risk, which was efficient, simple, and robust

    Challenges for Service Robots—Requirements of Elderly Adults with Cognitive Impairments

    No full text
    ObjectiveWe focused on identifying the requirements and needs of people suffering from Alzheimer disease and early dementia stages with relation to robotic assistants.MethodsBased on focus groups performed in two centers (Poland and Spain), we created surveys for medical staff, patients, and caregivers, including: functional requirements; human–robot interaction, the design of the robotic assistant and user acceptance aspects. Using Likert scale and analysis made on the basis of the frequency of survey responses, we identified users’ needs as high, medium, and low priority.ResultsWe gathered 264 completed surveys (100 from medical staff, 81 from caregivers, and 83 from potential users). Most of the respondents, almost at the same level in each of the three groups, accept robotic assistants and their support in everyday life. High level priority functional requirements were related to reacting in emergency situations (calling for help, detecting/removing obstacles) and to reminding about medication intake, about boiling water, turning off the gas and lights (almost 60% of answers). With reference to human–robot interaction, high priority was given to voice operated system and the capability of robotic assistants to reply to simple questions.ConclusionOur results help in achieving better understanding of the needs of patients with cognitive impairments during home tasks in everyday life. This way of conducting the research, with considerations for the interests of three stakeholder groups in two autonomic centers with proven experience regarding the needs of our patient groups, highlights the importance of obtained results
    corecore