11 research outputs found

    Metal-Lined Semiconductor Nanotubes for Surface Plasmon-Mediated Luminescence Enhancement

    No full text
    Highly efficient solid-state light-emitting devices require semiconductor architectures equipped with high quantum efficiency and integratability on conductive substrates. Surface plasmon (SP)-mediated luminescence enhancement has been considered as one of the most promising solutions, because SP resonance can greatly improve the radiative recombination rate and be achieved using metal entities compatible with the electrode fabrication process. Nevertheless, metal/semiconductor heterostructures have had several fabrication-compatible issues due to metal as a potential contaminant of the semiconductor. We present here a simple fabrication scheme for a metal-lined semiconductor nanotube heterostructure, in which a metal layer is selectively formed on the inner wall of the semiconductor nanotube. The Ag-lining process in a ZnO nanotube resulted in 7.5-fold enhancement of the photoluminescence intensity at 11 K. This SP fabrication technique looks promising for highly efficient solid-state lighting based on semiconductor nanostructures without detrimental effects

    Exciton Scattering Mechanism in a Single Semiconducting MgZnO Nanorod

    No full text
    Excitonic phenomena, such as excitonic absorption and emission, have been used in many photonic and optoelectronic semiconductor device applications. As the sizes of these nanoscale materials have approached to exciton diffusion lengths in semiconductors, a fundamental understanding of exciton transport in semiconductors has become imperative. We present exciton transport in a single MgZnO nanorod in the spatiotemporal regime with several nanometer-scale spatial resolution and several tens of picosecond temporal resolution. This study was performed using temperature-dependent cathodoluminescence and time-resolved photoluminescence spectroscopies. The exciton diffusion length in the MgZnO nanorod decreased from 100 to 70 nm with increasing temperature in the range of 5 and 80 K. The results obtained for the temperature dependence of exciton diffusion length and luminescence lifetime revealed that the dominant exciton scattering mechanism in MgZnO nanorod is exciton–phonon assisted piezoelectric field scattering

    Size-Dependent Silicon Epitaxy at Mesoscale Dimensions

    No full text
    New discoveries on collective processes in materials fabrication and performance are emerging in the mesoscopic size regime between the nanoscale, where atomistic effects dominate, and the macroscale, where bulk-like behavior rules. For semiconductor electronics and photonics, dimensional control of the architecture in this regime is the limiting factor for device performance. Epitaxial crystal growth is the major tool enabling simultaneous control of the dimensions and properties of such architectures. Although size-dependent effects have been studied for many small-scale systems, they have not been reported for the epitaxial growth of Si crystalline surfaces. Here, we show a strong dependence of epitaxial growth rates on size for nano to microscale radial wires and planar stripes. A model for this unexpected size-dependent vapor phase epitaxy behavior at small dimensions suggests that these effects are universal and result from an enhanced surface desorption of the silane (SiH<sub>4</sub>) growth precursor near facet edges. Introducing phosphorus or boron dopants during the silicon epitaxy further decreases the growth rates and, for phosphorus, gives rise to a critical layer thickness for single crystalline epitaxial growth. This previously unknown mesoscopic size-dependent growth effect at mesoscopic dimensions points to a new mechanism in vapor phase growth and promises greater control of advanced device geometries

    Engineering Localized Surface Plasmon Interactions in Gold by Silicon Nanowire for Enhanced Heating and Photocatalysis

    No full text
    The field of plasmonics has attracted considerable attention in recent years because of potential applications in various fields such as nanophotonics, photovoltaics, energy conversion, catalysis, and therapeutics. It is becoming increasing clear that intrinsic high losses associated with plasmons can be utilized to create new device concepts to harvest the generated heat. It is therefore important to design cavities, which can harvest optical excitations efficiently to generate heat. We report a highly engineered nanowire cavity, which utilizes a high dielectric silicon core with a thin plasmonic film (Au) to create an effective metallic cavity to strongly confine light, which when coupled with localized surface plasmons in the nanoparticles of the thin metal film produces exceptionally high temperatures upon laser irradiation. Raman spectroscopy of the silicon core enables precise measurements of the cavity temperature, which can reach values as high as 1000 K. The same Si–Au cavity with enhanced plasmonic activity when coupled with TiO<sub>2</sub> nanorods increases the hydrogen production rate by ∼40% compared to similar Au–TiO<sub>2</sub> system without Si core, in ethanol photoreforming reactions. These highly engineered thermoplasmonic devices, which integrate three different cavity concepts (high refractive index core, metallo-dielectric cavity, and localized surface plasmons) along with the ease of fabrication demonstrate a possible pathway for designing optimized plasmonic devices with applications in energy conversion and catalysis

    Si Radial <i>p‑i‑n</i> Junction Photovoltaic Arrays with Built-In Light Concentrators

    No full text
    High-performance photovoltaic (PV) devices require strong light absorption, low reflection and efficient photogenerated carrier collection for high quantum efficiency. Previous optical studies of vertical wires arrays have revealed that extremely efficient light absorption in the visible wavelengths is achievable. Photovoltaic studies have further advanced the wire approach by employing radial <i>p-n</i> junction architectures to achieve more efficient carrier collection. While radial <i>p-n</i> junction formation and optimized light absorption have independently been considered, PV efficiencies have further opportunities for enhancement by exploiting the radial <i>p-n</i> junction fabrication procedures to form arrays that simultaneously enhance <i>both</i> light absorption and carrier collection efficiency. Here we report a concept of morphology control to improve PV performance, light absorption and quantum efficiency of silicon radial <i>p-i-n</i> junction arrays. Surface energy minimization during vapor phase epitaxy is exploited to form match-head structures at the tips of the wires. The match-head structure acts as a built-in light concentrator and enhances optical absorptance and external quantum efficiencies by 30 to 40%, and PV efficiency under AM 1.5G illumination by 20% compared to cylindrical structures without match-heads. The design rules for these improvements with match-head arrays are systematically studied. This approach of process-enhanced control of three-dimensional Si morphologies provides a fab-compatible way to enhance the PV performance of Si radial <i>p-n</i> junction wire arrays

    Tailoring Lithiation Behavior by Interface and Bandgap Engineering at the Nanoscale

    No full text
    Controlling the transport of lithium (Li) ions and their reaction with electrodes is central in the design of Li-ion batteries for achieving high capacity, high rate, and long lifetime. The flexibility in composition and structure enabled by tailoring electrodes at the nanoscale could drastically change the ionic transport and help meet new levels of Li-ion battery performance. Here, we demonstrate that radial heterostructuring can completely suppress the commonly observed surface insertion of Li ions in all reported nanoscale systems to date and to exclusively induce axial lithiation along the ⟨111⟩ direction in a layer-by-layer fashion. The new lithiation behavior is achieved through the deposition of a conformal, epitaxial, and ultrathin silicon (Si) shell on germanium (Ge) nanowires, which creates an effective chemical potential barrier for Li ion diffusion through and reaction at the nanowire surface, allowing only axial lithiation and volume expansion. These results demonstrate for the first time that interface and bandgap engineering of electrochemical reactions can be utilized to control the nanoscale ionic transport/insertion paths and thus may be a new tool to define the electrochemical reactions in Li-ion batteries

    Tailoring Lithiation Behavior by Interface and Bandgap Engineering at the Nanoscale

    No full text
    Controlling the transport of lithium (Li) ions and their reaction with electrodes is central in the design of Li-ion batteries for achieving high capacity, high rate, and long lifetime. The flexibility in composition and structure enabled by tailoring electrodes at the nanoscale could drastically change the ionic transport and help meet new levels of Li-ion battery performance. Here, we demonstrate that radial heterostructuring can completely suppress the commonly observed surface insertion of Li ions in all reported nanoscale systems to date and to exclusively induce axial lithiation along the ⟨111⟩ direction in a layer-by-layer fashion. The new lithiation behavior is achieved through the deposition of a conformal, epitaxial, and ultrathin silicon (Si) shell on germanium (Ge) nanowires, which creates an effective chemical potential barrier for Li ion diffusion through and reaction at the nanowire surface, allowing only axial lithiation and volume expansion. These results demonstrate for the first time that interface and bandgap engineering of electrochemical reactions can be utilized to control the nanoscale ionic transport/insertion paths and thus may be a new tool to define the electrochemical reactions in Li-ion batteries

    Tailoring Lithiation Behavior by Interface and Bandgap Engineering at the Nanoscale

    No full text
    Controlling the transport of lithium (Li) ions and their reaction with electrodes is central in the design of Li-ion batteries for achieving high capacity, high rate, and long lifetime. The flexibility in composition and structure enabled by tailoring electrodes at the nanoscale could drastically change the ionic transport and help meet new levels of Li-ion battery performance. Here, we demonstrate that radial heterostructuring can completely suppress the commonly observed surface insertion of Li ions in all reported nanoscale systems to date and to exclusively induce axial lithiation along the ⟨111⟩ direction in a layer-by-layer fashion. The new lithiation behavior is achieved through the deposition of a conformal, epitaxial, and ultrathin silicon (Si) shell on germanium (Ge) nanowires, which creates an effective chemical potential barrier for Li ion diffusion through and reaction at the nanowire surface, allowing only axial lithiation and volume expansion. These results demonstrate for the first time that interface and bandgap engineering of electrochemical reactions can be utilized to control the nanoscale ionic transport/insertion paths and thus may be a new tool to define the electrochemical reactions in Li-ion batteries

    Tailoring Lithiation Behavior by Interface and Bandgap Engineering at the Nanoscale

    No full text
    Controlling the transport of lithium (Li) ions and their reaction with electrodes is central in the design of Li-ion batteries for achieving high capacity, high rate, and long lifetime. The flexibility in composition and structure enabled by tailoring electrodes at the nanoscale could drastically change the ionic transport and help meet new levels of Li-ion battery performance. Here, we demonstrate that radial heterostructuring can completely suppress the commonly observed surface insertion of Li ions in all reported nanoscale systems to date and to exclusively induce axial lithiation along the ⟨111⟩ direction in a layer-by-layer fashion. The new lithiation behavior is achieved through the deposition of a conformal, epitaxial, and ultrathin silicon (Si) shell on germanium (Ge) nanowires, which creates an effective chemical potential barrier for Li ion diffusion through and reaction at the nanowire surface, allowing only axial lithiation and volume expansion. These results demonstrate for the first time that interface and bandgap engineering of electrochemical reactions can be utilized to control the nanoscale ionic transport/insertion paths and thus may be a new tool to define the electrochemical reactions in Li-ion batteries

    Catalyst Composition and Impurity-Dependent Kinetics of Nanowire Heteroepitaxy

    No full text
    The mechanisms and kinetics of axial Ge–Si nanowire heteroepitaxial growth based on the tailoring of the Au catalyst composition <i>via</i> Ga alloying are studied by environmental transmission electron microscopy combined with systematic <i>ex situ</i> CVD calibrations. The morphology of the Ge–Si heterojunction, in particular, the extent of a local, asymmetric increase in nanowire diameter, is found to depend on the Ga composition of the catalyst, on the TMGa precursor exposure temperature, and on the presence of dopants. To rationalize the findings, a general nucleation-based model for nanowire heteroepitaxy is established which is anticipated to be relevant to a wide range of material systems and device-enabling heterostructures
    corecore