12 research outputs found

    Image Cluster Berdasarkan Warna Untuk Identifikasi Kematangan Buah Tomat Dengan Metode Valley Tracing

    Full text link
    Ciri yang digunakan dalam identifikasi kematangan buah adalah ciri warna (fitur R, G, dan B). Selanjutnya dilakukan clustering dengan metode Single Linkage Hierarchical Method (SLHM) terhadap ciri warna yang diperoleh. Dalam clustering, umumnya harus dilakukan inisialisasi jumlah cluster yang diinginkan terlebih dahulu, padahal pada beberapa kasus clustering, user bahkan tidak tahu berapa banyak cluster yang bisa dibangun. Untuk itu, dalam penelitian ini diaplikasikan metode Valley Tracing. Metode ini merupakan constraint yang akan melakukan identifikasi terhadap pergerakan variance dari tiap tahap pembentukan cluster, dan menganalisa polanya untuk membentuk suatu cluster secara otomatis (automatic clustering). Jumlah cluster yang diperoleh menunjukkan jumlah buah yang diidentifikasi, kemudian nama buah dan jenis kematangan masing-masing buah diperoleh dengan membandingkan nilai centroid tiap cluster dengan nilai centroid data training yang sebelumnya telah disimpan dalam database dan mempunyai label nama buah

    Replicator dynamic phase diagram of the speculator population.

    No full text
    <p>Replicator dynamic phase diagram of the speculator population.</p

    Assumptions of hog futures contract price unit: yuan/kg.

    No full text
    <p>Assumptions of hog futures contract price unit: yuan/kg.</p

    Fluctuations in the average weekly hog price from 2006 to 2015.

    No full text
    <p>Fluctuations in the average weekly hog price from 2006 to 2015.</p

    Replicator dynamics and steady state of the hedger and speculator population.

    No full text
    <p>Replicator dynamics and steady state of the hedger and speculator population.</p

    Replicator dynamic phase diagram of the hedger population.

    No full text
    <p>Replicator dynamic phase diagram of the hedger population.</p

    Difference sequences of weekly average hog price from 2006 to 2015.

    No full text
    <p>Difference sequences of weekly average hog price from 2006 to 2015.</p

    Fluctuations in average weekly hog prices for different time periods.

    No full text
    <p>Fluctuations in average weekly hog prices for different time periods.</p

    On the Role of Vapor Trapping for Chemical Vapor Deposition (CVD) Grown Graphene over Copper

    No full text
    The role of sample chamber configuration for the chemical vapor deposition of graphene over copper was investigated in detail. A configuration in which the gas flow is unrestricted was shown to lead to graphene with an inhomogeneous number of layers (between 1 and 3). An alternative configuration in which one end of the inner tube (in which the sample is placed) is closed so as to restrict the gas flow leads a homogeneous graphene layer number. Depending on the sample placement, either homogeneous monolayer or bilayer graphene is obtained. Under our growth conditions, the data show local conditions play a role on layer homogeneity such that under quasi-static equilibrium gas conditions not only is the layer number stabilized, but the quality of the graphene improves. In short, our data suggests vapor trapping can trap Cu species leading to higher carbon concentrations, which determines layer number and improved decomposition of the carbon feedstock (CH<sub>4</sub>), which leads to higher quality graphene

    Oxidation as A Means to Remove Surface Contaminants on Cu Foil Prior to Graphene Growth by Chemical Vapor Deposition

    No full text
    One of the more common routes to fabricate graphene is by chemical vapor deposition (CVD). This is primarily because of its potential to scale up the process and produce large area graphene. For the synthesis of large area monolayer Cu is probably the most popular substrate since it has a low carbon solubility enabling homogeneous single-layer sheets of graphene to form. This process requires a very clean substrate. In this work we look at the efficiency of common pretreatments such as etching or wiping with solvents and compare them to an oxidation treatment at 1025 °C followed by a reducing process by annealing in H<sub>2</sub>. The oxidation/reduction process is shown to be far more efficient allowing large area homogeneous single layer graphene formation without the presence of additional graphene flakes which form from organic contamination on the Cu surface
    corecore