12 research outputs found
Image Cluster Berdasarkan Warna Untuk Identifikasi Kematangan Buah Tomat Dengan Metode Valley Tracing
Ciri yang digunakan dalam identifikasi kematangan buah adalah ciri warna (fitur R, G, dan B). Selanjutnya dilakukan clustering dengan metode Single Linkage Hierarchical Method (SLHM) terhadap ciri warna yang diperoleh. Dalam clustering, umumnya harus dilakukan inisialisasi jumlah cluster yang diinginkan terlebih dahulu, padahal pada beberapa kasus clustering, user bahkan tidak tahu berapa banyak cluster yang bisa dibangun. Untuk itu, dalam penelitian ini diaplikasikan metode Valley Tracing. Metode ini merupakan constraint yang akan melakukan identifikasi terhadap pergerakan variance dari tiap tahap pembentukan cluster, dan menganalisa polanya untuk membentuk suatu cluster secara otomatis (automatic clustering). Jumlah cluster yang diperoleh menunjukkan jumlah buah yang diidentifikasi, kemudian nama buah dan jenis kematangan masing-masing buah diperoleh dengan membandingkan nilai centroid tiap cluster dengan nilai centroid data training yang sebelumnya telah disimpan dalam database dan mempunyai label nama buah
Replicator dynamic phase diagram of the speculator population.
<p>Replicator dynamic phase diagram of the speculator population.</p
Assumptions of hog futures contract price unit: yuan/kg.
<p>Assumptions of hog futures contract price unit: yuan/kg.</p
Fluctuations in the average weekly hog price from 2006 to 2015.
<p>Fluctuations in the average weekly hog price from 2006 to 2015.</p
Replicator dynamics and steady state of the hedger and speculator population.
<p>Replicator dynamics and steady state of the hedger and speculator population.</p
Replicator dynamic phase diagram of the hedger population.
<p>Replicator dynamic phase diagram of the hedger population.</p
Difference sequences of weekly average hog price from 2006 to 2015.
<p>Difference sequences of weekly average hog price from 2006 to 2015.</p
Fluctuations in average weekly hog prices for different time periods.
<p>Fluctuations in average weekly hog prices for different time periods.</p
On the Role of Vapor Trapping for Chemical Vapor Deposition (CVD) Grown Graphene over Copper
The
role of sample chamber configuration for the chemical vapor
deposition of graphene over copper was investigated in detail. A configuration
in which the gas flow is unrestricted was shown to lead to graphene
with an inhomogeneous number of layers (between 1 and 3). An alternative
configuration in which one end of the inner tube (in which the sample
is placed) is closed so as to restrict the gas flow leads a homogeneous
graphene layer number. Depending on the sample placement, either homogeneous
monolayer or bilayer graphene is obtained. Under our growth conditions,
the data show local conditions play a role on layer homogeneity such
that under quasi-static equilibrium gas conditions not only is the
layer number stabilized, but the quality of the graphene improves.
In short, our data suggests vapor trapping can trap Cu species leading
to higher carbon concentrations, which determines layer number and
improved decomposition of the carbon feedstock (CH<sub>4</sub>), which
leads to higher quality graphene
Oxidation as A Means to Remove Surface Contaminants on Cu Foil Prior to Graphene Growth by Chemical Vapor Deposition
One of the more common routes to
fabricate graphene is by chemical vapor deposition (CVD). This is
primarily because of its potential to scale up the process and produce
large area graphene. For the synthesis of large area monolayer Cu
is probably the most popular substrate since it has a low carbon solubility
enabling homogeneous single-layer sheets of graphene to form. This
process requires a very clean substrate. In this work we look at the
efficiency of common pretreatments such as etching or wiping with
solvents and compare them to an oxidation treatment at 1025 °C
followed by a reducing process by annealing in H<sub>2</sub>. The
oxidation/reduction process is shown to be far more efficient allowing
large area homogeneous single layer graphene formation without the
presence of additional graphene flakes which form from organic contamination
on the Cu surface