On the Role of Vapor Trapping for Chemical Vapor Deposition
(CVD) Grown Graphene over Copper
- Publication date
- Publisher
Abstract
The
role of sample chamber configuration for the chemical vapor
deposition of graphene over copper was investigated in detail. A configuration
in which the gas flow is unrestricted was shown to lead to graphene
with an inhomogeneous number of layers (between 1 and 3). An alternative
configuration in which one end of the inner tube (in which the sample
is placed) is closed so as to restrict the gas flow leads a homogeneous
graphene layer number. Depending on the sample placement, either homogeneous
monolayer or bilayer graphene is obtained. Under our growth conditions,
the data show local conditions play a role on layer homogeneity such
that under quasi-static equilibrium gas conditions not only is the
layer number stabilized, but the quality of the graphene improves.
In short, our data suggests vapor trapping can trap Cu species leading
to higher carbon concentrations, which determines layer number and
improved decomposition of the carbon feedstock (CH<sub>4</sub>), which
leads to higher quality graphene