1,137 research outputs found

    Quantum entanglement in plasmonic waveguides with near-zero mode indices

    Full text link
    We investigate the quantum entanglement between two quantum dots in a plasmonic waveguide with near-zero mode index, considering the dependence of concurrence on interdot distance, quantum dot-waveguide frequency detuning and coupling strength ratio. High concurrence is achieved for a wide range of interdot distance due to the near-zero mode index, which largely relaxes the strict requirement of interdot distance in conventional dielectric waveguides or metal nanowires. The proposed quantum dot-waveguide system with near-zero phase variation along the waveguide near the mode cutoff frequency shows very promising potential in quantum optics and quantum information processing

    Individual Use of Mobile Apps for Social Networking

    Get PDF
    Organizations are increasingly exploring the business opportunities brought about by social media applications. The ubiquitous access to these applications or their mobile versions (i.e., mobile apps) through smart phones makes them powerful. Understanding how individuals use social media applications to interact and to share information for decision making will help organizations better leverage the power of social media technology for their businesses. A research model is proposed by integrating the end-user computing theory and the psychological empowerment theory to explore the impact of effective use of mobile apps and the psychological empowerment on task innovation and continued use of mobile apps. The model was empirically tested with 390 responses using mobile apps for social networking or communication. Preliminary results suggest that the use of mobile apps and users’ psychological empowerment derived from using mobile apps lead to users’ task innovation and sustained efforts of using mobile apps

    A Deep Embedding Model for Co-occurrence Learning

    Full text link
    Co-occurrence Data is a common and important information source in many areas, such as the word co-occurrence in the sentences, friends co-occurrence in social networks and products co-occurrence in commercial transaction data, etc, which contains rich correlation and clustering information about the items. In this paper, we study co-occurrence data using a general energy-based probabilistic model, and we analyze three different categories of energy-based model, namely, the L1L_1, L2L_2 and LkL_k models, which are able to capture different levels of dependency in the co-occurrence data. We also discuss how several typical existing models are related to these three types of energy models, including the Fully Visible Boltzmann Machine (FVBM) (L2L_2), Matrix Factorization (L2L_2), Log-BiLinear (LBL) models (L2L_2), and the Restricted Boltzmann Machine (RBM) model (LkL_k). Then, we propose a Deep Embedding Model (DEM) (an LkL_k model) from the energy model in a \emph{principled} manner. Furthermore, motivated by the observation that the partition function in the energy model is intractable and the fact that the major objective of modeling the co-occurrence data is to predict using the conditional probability, we apply the \emph{maximum pseudo-likelihood} method to learn DEM. In consequence, the developed model and its learning method naturally avoid the above difficulties and can be easily used to compute the conditional probability in prediction. Interestingly, our method is equivalent to learning a special structured deep neural network using back-propagation and a special sampling strategy, which makes it scalable on large-scale datasets. Finally, in the experiments, we show that the DEM can achieve comparable or better results than state-of-the-art methods on datasets across several application domains

    The first-order effect of Holocene Northern Peatlands on global carbon cycle dynamics

    Get PDF
    Given the fact that the estimated present-day carbon storage of Northern Peatlands (NP) is about 300–500 petagram (PgC, 1 petagram = 1015 gram), and the NP has been subject to a slow but persistent growth over the Holocene epoch, it is desirable to include the NP in studies of Holocene carbon cycle dynamics. Here we use an Earth system Model of Intermediate Complexity to study the first-order effect of NP on global carbon cycle dynamics in the Holocene. We prescribe the reconstructed NP growth based on data obtained from numerous sites (located in Western Siberia, North America, and Finland) where peat accumulation records have been developed. Using an inverse method, we demonstrate that the long-term debates over potential source and/or sink of terrestrial ecosystem in the Holocene are clarified by using an inverse method, and our results suggest that the primary carbon source for the changes (sinks) of atmospheric and terrestrial carbon is the ocean, presumably, due to the deep ocean sedimentation pump (the so-called alkalinity pump). Our paper here complements ref. 1 by sensitivity tests using modified boundary conditions
    • …
    corecore