13 research outputs found

    Additional file 1: of MONGKIE: an integrated tool for network analysis and visualization for multi-omics data

    No full text
    Supplementary text, figures, and data files. All text and materials were formated as a small self-contained website (1 HTML file with necessary figures and data files). Data files include input and result files of the case study including the fold change of expression values between tumor vs. normal conditions (in log2FC), average expression value of each gene in 4 GBM subtypes, GBM-altered subnetworks (nodes and edges) weighted by expression correlations between each pair of genes, and gene sets in 2 critical modules and their functional annotations. (ZIP 4315kb

    Additional file 6: of An integrated clinical and genomic information system for cancer precision medicine

    Get PDF
    Figure S4. An example of filtering process to select a patient cohort based on clinical information or properties. A. Selection of female and lifelong never-smoker patients in the TCGA LUAD cohort. (“Cohort Selection” menu is located in left-top side of the page) B. Driver genes were sorted by mutation frequency by clicking the “# Mutations” label at the bottom. The sorting result confirmed that EGFR is the most frequently mutated gene among these patients, whereas TP53 mutation was prevalent in other patients as shown in Additional file 7: Figure S3. (PNG 179 kb

    Additional file 7: of An integrated clinical and genomic information system for cancer precision medicine

    No full text
    Figure S3. Cohort explorer for the whole TCGA LUAD cohort and our patient (1) Significant driver genes identified by MutSigCV [22]. Each horizontal bar represents total count of mutations on the corresponding gene in the cohort. Color scheme indicates the coding properties of mutations. (2) The gray bar represents –log10(p-values) of each driver gene. (3) Sample-wise count of mutations with coding properties color-coded. (4) Clinical features of samples. (5) Mutations found in our patient are plotted at left-most side (i.e. the first column). (PNG 120 kb

    Additional file 5: of An integrated clinical and genomic information system for cancer precision medicine

    No full text
    Instruction for users to upload their own FASTQ files into our BioCloud system so that they can process the NGS data and get the various reports described in main script. (PDF 1060 kb

    A High-Dimensional, Deep-Sequencing Study of Lung Adenocarcinoma in Female Never-Smokers

    Get PDF
    <div><h3>Background</h3><p>Deep sequencing techniques provide a remarkable opportunity for comprehensive understanding of tumorigenesis at the molecular level. As omics studies become popular, integrative approaches need to be developed to move from a simple cataloguing of mutations and changes in gene expression to dissecting the molecular nature of carcinogenesis at the systemic level and understanding the complex networks that lead to cancer development.</p> <h3>Results</h3><p>Here, we describe a high-throughput, multi-dimensional sequencing study of primary lung adenocarcinoma tumors and adjacent normal tissues of six Korean female never-smoker patients. Our data encompass results from exome-seq, RNA-seq, small RNA-seq, and MeDIP-seq. We identified and validated novel genetic aberrations, including 47 somatic mutations and 19 fusion transcripts. One of the fusions involves the <em>c-RET</em> gene, which was recently reported to form fusion genes that may function as drivers of carcinogenesis in lung cancer patients. We also characterized gene expression profiles, which we integrated with genomic aberrations and gene regulations into functional networks. The most prominent gene network module that emerged indicates that disturbances in G2/M transition and mitotic progression are causally linked to tumorigenesis in these patients. Also, results from the analysis strongly suggest that several novel microRNA-target interactions represent key regulatory elements of the gene network.</p> <h3>Conclusions</h3><p>Our study not only provides an overview of the alterations occurring in lung adenocarcinoma at multiple levels from genome to transcriptome and epigenome, but also offers a model for integrative genomics analysis and proposes potential target pathways for the control of lung adenocarcinoma.</p> </div
    corecore