257 research outputs found

    Effect of freeze-thaw cycles on triaxial strength properties of fiber-reinforced clayey soil

    Get PDF
    Understanding effect of freezing phenomenon in a fiber-reinforced soil structure is essential to foundation technology, road construction and earthwork application in cold region. This research aims to present the results of experimental investigation relative to the unconsolidated-undrained triaxial compression behavior of fine-grained soil as a function of freeze-thaw cycles and fiber volume fractions. All measurements were carried out for 3 selected glass and basalt fiber fractions (0%, 0.5%, and 1%) and 5 selected freeze-thaw cycles (0, 2, 5, 10, and 15). It has been observed that for the studied soil, strength of unreinforced soil reduced with increasing number of the freeze-thaw cycles while fiber-reinforced soil shows greater effect and the strength reduction amount reduces from 40% to 18%. Moreover, the reduction trend for cohesion of the fiber-reinforced soil decreased, this was seen more prevalent on 1% glass fiber-reinforced soil. The resilient modulus of all specimens reduced with increasing number of the freezethaw cycles. The experimental results demonstrated that different fiber fractions and their mixtures could be employed as supplement additive to improve the freeze-thaw performance of cohesive soils for road construction and earthworks

    Literary destination familiarity and inbound tourism: evidence from mainland China

    Get PDF
    Destination familiarity is an important non-economic determinant of tourists’ destination choice that has not been adequately studied. This study posits a literary dimension to the concept of destination familiarity —that is, the extent to which tourists have gained familiarity with a given destination through literature—and seeks to investigate the impact of this form of familiarity on inbound tourism to Mainland China. Employing the English fiction dataset of the Google Books corpus, the New York Times annotated corpus, and the Time magazine corpus, we construct two types of destination familiarity based on literary texts: affection-based destination familiarity and knowledge-based destination familiarity. The results from dynamic panel estimation (1994–2004) demonstrate that the higher the degree of affection-based destination familiarity with a province in the previous year, the larger the number of inbound tourists the following year. Examining the influence of literature and its consumption on tourism activities sheds light on the dynamics of sustainable tourism development in emerging markets

    Research and Design of Indoor Parking Guidance System for Urban Traffic

    Get PDF
    In view of the existing drawbacks of indoor parking guidance system in commercial areas, this paper designs an indoor parking guidance system suitable for urban traffic. The owner first selects the appropriate parking lot through the Mini Program, and reserves a detailed parking space on the Mini Program, and after arriving at the parking lot, the Mini Program performs optimal path planning according algorithm to guide the owner to find the parking space. After arriving at the reserved parking space according to the prompts, the smart parking lock is unlocked by "one-key unlock", and the video detection system observes the parking behavior in real time to avoid the occurrence of illegal parking. At the same time, voice assistants and blind spot guidance facilities are also provided during the induction process to optimize the urban parking guidance system

    Driving Control Research for Longitudinal Dynamics of Electric Vehicles with Independently Driven Front and Rear Wheels

    Get PDF
    This paper takes the electric off-road vehicle with separated driven axles as the research object. To solve the longitudinal dynamics driving control problems, vehicle dynamics model, and control strategies were studied and the corresponding simulation was carried out. An 8-DOF vehicle dynamics model with separated driven axles was built. The driving control strategies on the typical roads were put forward. The recognition algorithm of the typical road surfaces based on the wheels’ slip rates was proposed. And the two control systems were designed including the pedal opening degree adjustment control system based on PI algorithm and the interaxle torque distribution control system based on sliding mode control algorithm. The driving control flow of the proposed vehicle combining the pedal adjustment control system with the interaxle torque distribution control system was developed. And the driven control strategies for the typical roads were simulated. Simulation results show that the proposed drive control strategies can adapt to different typical road surfaces, limit the slip rates of the driving wheels within the stable zone, and ensure the vehicle driving safely and stably in accordance with the driver's intention

    Virtual Reality Based Robot Teleoperation via Human-Scene Interaction

    Full text link
    Robot teleoperation gains great success in various situations, including chemical pollution rescue, disaster relief, and long-distance manipulation. In this article, we propose a virtual reality (VR) based robot teleoperation system to achieve more efficient and natural interaction with humans in different scenes. A user-friendly VR interface is designed to help users interact with a desktop scene using their hands efficiently and intuitively. To improve user experience and reduce workload, we simulate the process in the physics engine to help build a preview of the scene after manipulation in the virtual scene before execution. We conduct experiments with different users and compare our system with a direct control method across several teleoperation tasks. The user study demonstrates that the proposed system enables users to perform operations more instinctively with a lighter mental workload. Users can perform pick-and-place and object-stacking tasks in a considerably short time, even for beginners. Our code is available at https://github.com/lingxiaomeng/VR_Teleoperation_Gen3

    Enhance Connectivity of Promising Regions for Sampling-based Path Planning

    Full text link
    Sampling-based path planning algorithms usually implement uniform sampling methods to search the state space. However, uniform sampling may lead to unnecessary exploration in many scenarios, such as the environment with a few dead ends. Our previous work proposes to use the promising region to guide the sampling process to address the issue. However, the predicted promising regions are often disconnected, which means they cannot connect the start and goal state, resulting in a lack of probabilistic completeness. This work focuses on enhancing the connectivity of predicted promising regions. Our proposed method regresses the connectivity probability of the edges in the x and y directions. In addition, it calculates the weight of the promising edges in loss to guide the neural network to pay more attention to the connectivity of the promising regions. We conduct a series of simulation experiments, and the results show that the connectivity of promising regions improves significantly. Furthermore, we analyze the effect of connectivity on sampling-based path planning algorithms and conclude that connectivity plays an essential role in maintaining algorithm performance.Comment: Accepted in Transactions on Automation Science and Engineering, 202

    Dynamic behavior of fiber-reinforced soil under freeze-thaw cycles

    Get PDF
    This research presents the dynamic behavior of fiber-reinforced soil exposed to freeze-thaw cycles. The series of dynamic triaxial tests were conducted on fine-grained soil mixed with different percentages of basalt and glass fibers subjected to freeze-thaw cycles. The results showed that after freeze-thaw cycles, with the addition of basalt and glass fibers, the damping ratio and the shear modulus increased at a constant confining pressure because of the increase of stiffness, but the shear modulus decreased with increasing shear strain. Moreover, the theoretical analytical formulations were developed to define for dynamic shear stress and dynamic shear modulus. The parameters were predicted by Hardin-Drnevich model and Kondner-Zelasko model. The shear modulus was expressed as a function of freeze-thaw cycles, fiber contents, confining pressure and initial water content. Finally, ten coefficients were calibrated by analyzing the experimental results and then employed to describe dynamic shear modulus of the fiber-reinforced soil

    Multi-Risk-RRT: An Efficient Motion Planning Algorithm for Robotic Autonomous Luggage Trolley Collection at Airports

    Full text link
    Robots have become increasingly prevalent in dynamic and crowded environments such as airports and shopping malls. In these scenarios, the critical challenges for robot navigation are reliability and timely arrival at predetermined destinations. While existing risk-based motion planning algorithms effectively reduce collision risks with static and dynamic obstacles, there is still a need for significant performance improvements. Specifically, the dynamic environments demand more rapid responses and robust planning. To address this gap, we introduce a novel risk-based multi-directional sampling algorithm, Multi-directional Risk-based Rapidly-exploring Random Tree (Multi-Risk-RRT). Unlike traditional algorithms that solely rely on a rooted tree or double trees for state space exploration, our approach incorporates multiple sub-trees. Each sub-tree independently explores its surrounding environment. At the same time, the primary rooted tree collects the heuristic information from these sub-trees, facilitating rapid progress toward the goal state. Our evaluations, including simulation and real-world environmental studies, demonstrate that Multi-Risk-RRT outperforms existing unidirectional and bi-directional risk-based algorithms in planning efficiency and robustness

    Experimental and modeling investigation of the thermal conductivity of fiber-reinforced soil subjected to freeze-thaw cycles

    Get PDF
    The thermal conductivity of fine-grained soil, both unreinforced and reinforced with randomly oriented basalt, glass, and steel fibers, was tested by means of the transient hot-wire method with a Quickline-30 Thermal Properties Analyzer. The thermal conductivities of specimens were determined as a function of fiber volume fractions, freeze-thaw cycles, and temperature through laboratory studies. Thermal conductivity of the fiber-reinforced soil decreased for all freeze-thaw cycles and temperature values. The most remarkable reduction of thermal conductivity was measured on all ratios of the steel fiber-reinforced soil and 1% basalt fiber-reinforced soil. Moreover, the statistical-physical model proposed by Usowicz was applied to evaluate the thermal conductivity of fiber-reinforced soil by considering soil-fiber composites and environmental factors. The results showed a close match between the values estimated by the statistical-physical model and the experimental values for various fiber-reinforced soils in a wide range of fiber ratios, temperatures, water contents, and freeze-thaw cycles
    corecore