127 research outputs found

    Optimized Dimensionality Reduction for Moment-based Distributionally Robust Optimization

    Full text link
    Moment-based distributionally robust optimization (DRO) provides an optimization framework to integrate statistical information with traditional optimization approaches. Under this framework, one assumes that the underlying joint distribution of random parameters runs in a distributional ambiguity set constructed by moment information and makes decisions against the worst-case distribution within the set. Although most moment-based DRO problems can be reformulated as semidefinite programming (SDP) problems that can be solved in polynomial time, solving high-dimensional SDPs is still time-consuming. Unlike existing approximation approaches that first reduce the dimensionality of random parameters and then solve the approximated SDPs, we propose an optimized dimensionality reduction (ODR) approach. We first show that the ranks of the matrices in the SDP reformulations are small, by which we are then motivated to integrate the dimensionality reduction of random parameters with the subsequent optimization problems. Such integration enables two outer and one inner approximations of the original problem, all of which are low-dimensional SDPs that can be solved efficiently. More importantly, these approximations can theoretically achieve the optimal value of the original high-dimensional SDPs. As these approximations are nonconvex SDPs, we develop modified Alternating Direction Method of Multipliers (ADMM) algorithms to solve them efficiently. We demonstrate the effectiveness of our proposed ODR approach and algorithm in solving two practical problems. Numerical results show significant advantages of our approach on the computational time and solution quality over the three best possible benchmark approaches. Our approach can obtain an optimal or near-optimal (mostly within 0.1%) solution and reduce the computational time by up to three orders of magnitude

    Drying mediated orientation and assembly structure of amphiphilic Janus particles

    Get PDF
    Amphiphilic Janus particles demonstrate unique assembly structures when dried on a hydrophilic substrate. Particle orientations are influenced by amphiphilicity and Janus balance. A three-stage model is developed to describe the process. Simulation further indicates the dominant force is capillary attraction due to the interface pinning at rough Janus boundaries

    Reliable Generation of EHR Time Series via Diffusion Models

    Full text link
    Electronic Health Records (EHRs) are rich sources of patient-level data, including laboratory tests, medications, and diagnoses, offering valuable resources for medical data analysis. However, concerns about privacy often restrict access to EHRs, hindering downstream analysis. Researchers have explored various methods for generating privacy-preserving EHR data. In this study, we introduce a new method for generating diverse and realistic synthetic EHR time series data using Denoising Diffusion Probabilistic Models (DDPM). We conducted experiments on six datasets, comparing our proposed method with eight existing methods. Our results demonstrate that our approach significantly outperforms all existing methods in terms of data utility while requiring less training effort. Our approach also enhances downstream medical data analysis by providing diverse and realistic synthetic EHR data

    Cure the headache of Transformers via Collinear Constrained Attention

    Full text link
    As the rapid progression of practical applications based on Large Language Models continues, the importance of extrapolating performance has grown exponentially in the research domain. In our study, we identified an anomalous behavior in Transformer models that had been previously overlooked, leading to a chaos around closest tokens which carried the most important information. We've coined this discovery the "headache of Transformers". To address this at its core, we introduced a novel self-attention structure named Collinear Constrained Attention (CoCA). This structure can be seamlessly integrated with existing extrapolation, interpolation methods, and other optimization strategies designed for traditional Transformer models. We have achieved excellent extrapolating performance even for 16 times to 24 times of sequence lengths during inference without any fine-tuning on our model. We have also enhanced CoCA's computational and spatial efficiency to ensure its practicality. We plan to open-source CoCA shortly. In the meantime, we've made our code available in the appendix for reappearing experiments.Comment: 16 pages, 6 figure

    Interaction of cellulase with three phenolic acids

    Get PDF
    The activity of cellulase against filter paper was enhanced by 28.32% and 15.17% after the addition of 0.83 mg/ml of ferulic acid and p-coumaric acid, respectively, and by 10.15% after the addition of salicylic acid at 0.67 mg/ml. The effects of three phenolic acids on the structure of cellulase were investigated via ultraviolet spectrophotometry, fluorescence spectroscopy, and circular dichroism (CD) spectroscopy. Ultraviolet spectroscopic results indicated that the peak absorbance of cellulase significantly increased and exhibited a 4–5 nm redshift after the addition of the three phenolic acids, suggesting that the phenolic acids strongly interacted with the enzyme. Fluorescence investigation of the interaction between the enzyme and the phenolic acids showed that ferulic acid and p-coumaric acid covalently reacted with the aromatic amino acid residues in cellulase, whereas salicylic acid interacted non-covalently with cellulase. CD analysis revealed that the addition of the phenolic acids significantly decreased α-helix content but increased β-sheet and random coil contents. The possible mechanism underlying the effects of these phenolic acids on cellulase activity was also discussed.</p

    China’s carbon capture, utilization and storage (CCUS) policy:A critical review

    Get PDF
    Carbon capture, utilization and storage (CCUS), has been deemed an essential component for climate change mitigation and is conducive to enabling a low-carbon and sustainable future. Since the 12th Five-year Plan, China has included this technology as part of its future national carbon mitigation strategies. China's policy framework in relation to CCUS has had a strong influencing role in the technology's progress to date. This paper employs the “policy cycle” to analyze China's existing CCUS regulatory framework at the national and provincial level, evaluate its performance and clarify its shortcomings in light of the comparisons of policy movements undertaken in other countries. The results indicate that China's CCUS policy is insufficient for further development of the technology and many issues remain to be solved. This includes the lack of an enforceable legal framework, insufficient information for the operationalization of projects, weak market stimulus, and a lack of financial subsidies. These factors may be the reason we have seen low participation rates of Chinese companies in CCUS and little public understanding of what the technology offers. To overcome these challenges, suggestions are provided for improving China's CCUS legal and policy framework

    Continual Learning in Predictive Autoscaling

    Full text link
    Predictive Autoscaling is used to forecast the workloads of servers and prepare the resources in advance to ensure service level objectives (SLOs) in dynamic cloud environments. However, in practice, its prediction task often suffers from performance degradation under abnormal traffics caused by external events (such as sales promotional activities and applications re-configurations), for which a common solution is to re-train the model with data of a long historical period, but at the expense of high computational and storage costs. To better address this problem, we propose a replay-based continual learning method, i.e., Density-based Memory Selection and Hint-based Network Learning Model (DMSHM), using only a small part of the historical log to achieve accurate predictions. First, we discover the phenomenon of sample overlap when applying replay-based continual learning in prediction tasks. In order to surmount this challenge and effectively integrate new sample distribution, we propose a density-based sample selection strategy that utilizes kernel density estimation to calculate sample density as a reference to compute sample weight, and employs weight sampling to construct a new memory set. Then we implement hint-based network learning based on hint representation to optimize the parameters. Finally, we conduct experiments on public and industrial datasets to demonstrate that our proposed method outperforms state-of-the-art continual learning methods in terms of memory capacity and prediction accuracy. Furthermore, we demonstrate remarkable practicability of DMSHM in real industrial applications

    Uncertainty Quantification for Molecular Property Predictions with Graph Neural Architecture Search

    Full text link
    Graph Neural Networks (GNNs) have emerged as a prominent class of data-driven methods for molecular property prediction. However, a key limitation of typical GNN models is their inability to quantify uncertainties in the predictions. This capability is crucial for ensuring the trustworthy use and deployment of models in downstream tasks. To that end, we introduce AutoGNNUQ, an automated uncertainty quantification (UQ) approach for molecular property prediction. AutoGNNUQ leverages architecture search to generate an ensemble of high-performing GNNs, enabling the estimation of predictive uncertainties. Our approach employs variance decomposition to separate data (aleatoric) and model (epistemic) uncertainties, providing valuable insights for reducing them. In our computational experiments, we demonstrate that AutoGNNUQ outperforms existing UQ methods in terms of both prediction accuracy and UQ performance on multiple benchmark datasets. Additionally, we utilize t-SNE visualization to explore correlations between molecular features and uncertainty, offering insight for dataset improvement. AutoGNNUQ has broad applicability in domains such as drug discovery and materials science, where accurate uncertainty quantification is crucial for decision-making
    corecore