233 research outputs found

    Distances to the Supernova Remnants in the Inner Disk

    Full text link
    Distance measurements of supernova remnants (SNRs) are essential and important. Accurate estimates of physical size, dust masses, and some other properties of SNRs depend critically on accurate distance measurements. However, the determination of SNR distances is still a tough task. Red clump stars (RCs) have a long history been used as standard candles. In this work, we take RCs as tracers to determine the distances to a large group of SNRs in the inner disk. We first select RC stars based on the near-infrared (IR) color-magnitude diagram (CMD). Then, the distance to and extinction of RC stars are calculated. To extend the measurable range of distance, we combine near-IR photometric data from the 2MASS survey with the deeper UKIDSS and VVV surveys. With the help of the Gaia parallaxes, we also remove contaminants including dwarfs and giants. Because an SN explosion compresses the surrounding interstellar medium, the SNR region would become denser and exhibit higher extinction than the surroundings. The distance of a SNR is then recognized by the position where the extinction and its gradient is higher than that of the ambient medium. A total of 63 SNRs' distances in the Galactic inner disk are determined and divided into three Levels A, B, and C with decreasing reliability. The distances to 43 SNRs are well determined with reliability A or B. The diameters and dust masses of SNRs are estimated with the obtained distance and extinction.Comment: 31 pages, 25 figures, 2 tables, accepted for publication in A&

    How to address vaccine hesitancy? Lessons from National Hepatitis B Immunization Program in China

    Get PDF
    China, with the severe burden of hepatitis B, plays a significant role in the global efforts towards eliminating hepatitis B disease by 2030. Vaccination is recognized as the most effective measure to prevent infectious diseases. However, vaccine hesitancy remains a significant barrier to achieving herd immunity across diverse populations. To address this issue, the health ministries and public health authorities in China have implemented various measures to encourage hepatitis B vaccination. China’s National Hepatitis B Immunization Program, initiated in 1985, has been successful in controlling this vaccine-preventable disease. Given the challenges in eliminating hepatitis B, strengthening the National Hepatitis Immunization Program in China is of utmost importance. Through an analysis of policy documents, reports, and scientific papers, the history of the program was summarized, and effective approaches to address vaccine hesitancy were identified. This will help achieve universal health coverage of vaccines and effectively work towards meeting the goals set for 2030

    Inhibition of SARS Pseudovirus Cell Entry by Lactoferrin Binding to Heparan Sulfate Proteoglycans

    Get PDF
    It has been reported that lactoferrin (LF) participates in the host immune response against Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) invasion by enhancing NK cell activity and stimulating neutrophil aggregation and adhesion. We further investigated the role of LF in the entry of SARS pseudovirus into HEK293E/ACE2-Myc cells. Our results reveal that LF inhibits SARS pseudovirus infection in a dose-dependent manner. Further analysis suggested that LF was able to block the binding of spike protein to host cells at 4°C, indicating that LF exerted its inhibitory function at the viral attachment stage. However, LF did not disrupt the interaction of spike protein with angiotensin-converting enzyme 2 (ACE2), the functional receptor of SARS-CoV. Previous studies have shown that LF colocalizes with the widely distributed cell-surface heparan sulfate proteoglycans (HSPGs). Our experiments have also confirmed this conclusion. Treatment of the cells with heparinase or exogenous heparin prevented binding of spike protein to host cells and inhibited SARS pseudovirus infection, demonstrating that HSPGs provide the binding sites for SARS-CoV invasion at the early attachment phase. Taken together, our results suggest that, in addition to ACE2, HSPGs are essential cell-surface molecules involved in SARS-CoV cell entry. LF may play a protective role in host defense against SARS-CoV infection through binding to HSPGs and blocking the preliminary interaction between SARS-CoV and host cells. Our findings may provide further understanding of SARS-CoV pathogenesis and aid in treatment of this deadly disease

    Exploring the interfacial coupling between graphene and the antiferromagnetic insulator MnPSe3_3

    Full text link
    Interfacial coupling between graphene and other 2D materials can give rise to intriguing physical phenomena. In particular, several theoretical studies predict that the interplay between graphene and an antiferromagnetic insulator could lead to the emergence of quantum anomalous Hall phases. However, such phases have not been observed experimentally yet, and further experimental studies are needed to reveal the interaction between graphene and antiferromagnetic insulators. Here, we report the study in heterostructures composed of graphene and the antiferromagnetic insulator MnPSe3_3. It is found that the MnPSe3_3 has little impact on the quantum Hall phases apart from doping graphene via interfacial charge transfer. However, the magnetic order can contribute indirectly via process like Kondo effect, as evidenced by the observed minimum in the temperature-resistance curve between 20-40 K, far below the N\'eel temperature (70 K)

    Evaluation of the cytotoxic effects of sodium hypochlorite on human dental stem cells

    Get PDF
    Purpose: To investigate the influence of sodium hypochlorite (NaOCl) on human dental stem cell proliferation and differentiation.Method: Dental pulp stem cells (DPSCs), periodontal ligament stem cell (PDLSCs), and gingival mesenchymal stem cells (GMSCs) were treated with NaOCl. Cell viability was evaluated with cellular counting kit-8 (CCK8), and cellular adenosine triphosphate (ATP) levels were analyzed by bromodeoxyuridine (BrdU) incorporation and subsequent flow cytometry. Quantitative polymerase chain reaction (qPCR) and western blotting were performed to detect the expressions of differentiation markers.Results: The viability and ATP levels of all three stem cells types were impaired by NaOCl in a concentration- and time-dependent manners. However, the decrease ATP in GMSCs was less than the other two stem cell population (p < 0.05). NaOCl treatment significantly suppressed the proliferation of dental stem cells (p < 0.05). With regard to differentiation marker expression levels, the decrease in Stro-1 was greater in treatment groups when compared to control on Day 7, while increase in levels of dentin sialophosphoprotein (DSPP), bone sialoprotein (BSP), and osteocalcin (OC) was smaller (p < 0.05). The expressional changes of Stro-1, DSPP, BSP, and OC were more prominent in DPSMs and PDLSCs than in GMSCs.Conclusion: NaOCl dose-dependently impairs the viability, proliferation and differentiation of dental stem cells. Thus, its toxicity to dental stem cells needs to be considered in clinical application.Keywords: Dental stem cells, Sodium hypochlorite, Viability, Proliferation, Differentiatio

    MiR-181d-5p Targets KLF6 to Improve Ischemia/Reperfusion-Induced AKI Through Effects on Renal Function, Apoptosis, and Inflammation

    Get PDF
    Renal tubular epithelial cell (RTEC) death and renal interstitial inflammation are the most crucial pathophysiological changes in acute kidney ischemia/reperfusion injury (IRI). The microRNA (miR)-181d family plays diverse roles in cell proliferation, apoptosis and inflammation, but its renal target and potential role in IRI are unknown. Here, we showed that the expression of miR-181d-5p decreased and Krueppel-like factor 6 (KLF6) increased in a renal cell (HK-2) model of hypoxia/reoxygenation (H/R) injury and a mouse model of renal IRI. They were mainly distributed in the renal tubules. After renal IRI, miR-181d-5p overexpression significantly inhibited inflammatory mediators, reduced apoptosis and further improved renal function. KLF6 exacerbated RTEC damage and acted as a NF-ÎşB co-activator to aggravate the renal IRI inflammatory response. Mechanistically, KLF6 was predicted as a new potential target gene of miR-181d-5p through bioinformatic analysis and luciferase reporter assay verification. After overexpressing miR-181d-5p and inhibiting KLF6, the role of miR-181d-5p was weakened on the renal damage improvement. In conclusion, miR-181d-5p upregulation produced protective antiapoptotic and anti-inflammatory effects against IRI in kidneys in vivo and H/R injury in HK-2 cells in vitro, and these effects were achieved by targeted inhibition of KLF6. Thus, our results provide novel insights into the molecular mechanisms associated with IRI and a potential novel therapeutic target

    Deletion of FgHOG1 Is Suppressive to the mgv1 Mutant by Stimulating Gpmk1 Activation and Avoiding Intracellular Turgor Elevation in Fusarium graminearum

    Get PDF
    Fusarium head blight caused by Fusarium graminearum is an important disease of wheat and barley. Previous studies have showed that all three MAP kinase genes, MGV1, FgHOG1, and GPMK1, are involved in regulating hyphal growth, sexual reproduction, plant infection, and stress responses in this pathogen. To determine the relationship between the Mgv1 and FgHog1 pathways, in this study, we generated and characterized the mgv1 Fghog1 double mutant. Deletion of FgHOG1 partially rescued the defects of the mgv1 mutant in vegetative growth and cell wall integrity but had no effects on its defects in plant infection and DON production. The mgv1 Fghog1 mutant grew faster and was more tolerant to cell wall stressors than the mgv1 mutant. Swollen compartments and cell burst were observed frequently in the mgv1 mutant but rarely in the mgv1 Fghog1 mutant when treated with fungicide fludioxonil or cell wall stressor Congo red. Conversely, the deletion of MGV1 also alleviated the hyperosmotic sensitivity of the Fghog1 mutant in vegetative growth. TGY assays indicated increased phosphorylation of FgHog1 in the mgv1 mutant, and TEY assays further revealed elevated activation of Gpmk1 in the mgv1 Fghog1 double mutant, particularly under cell wall stress conditions. Overall, our data showed that deletion of FgHOG1 partially suppressed the defects of the mgv1 mutant, possibly by affecting genes related to cell wall integrity and osmoregulation via the over-activation of Gpmk1 MAP kinase and avoiding intracellular turgor elevation

    Scutellarin Ameliorates Renal Injury via Increasing CCN1 Expression and Suppressing NLRP3 Inflammasome Activation in Hyperuricemic Mice

    Get PDF
    Considerable evidences have indicated that elevated uric acid (UA) was involved in renal tubular injury leading to hyperuricemic nephropathy (HN). Scutellarin is a biologically active flavonoid derived from the Chinese traditional herb Erigeron breviscapus Hand-Mazz, which has been widely used in the treatment of cardiovascular and cerebrovascular diseases. In the present study, we analyzed the effect of scutellarin on HN, by using C57BL/6 mice and human renal tubular epithelial cell line HK-2 which was subjected to adenine/potassium oxonate and UA to mimic a HN injury. The HN mice showed a significant decrease in renal function with the increased SCr and blood urea nitrogen (BUN) (p < 0.05). Hematoxylin-eosin staining results showed a histological injury in HN mice kidney tissues with severe tubular damage. Scutellarin dose dependently alleviated the renal injury of the HN model (p < 0.05), and a dose of 20 mg/kg/day remarkably reduced the Scr level (26.10 +/- 3.23 mu mol/ml vs. 48.39 +/- 7.51 mu mol/ml, p < 0.05) and BUN (151.12 +/- 30.24 mmol/L vs. 210.43 +/- 45.67 mmol/L, p < 0.05) compared with the HN model group. Similarly, scutellarin decreased NGAL, Kim-1, cystatin C, and IL-18 protein expression levels in HN mouse (p < 0.05). Overexpressed CCN1 could not induce NLRP3 inflammasome activation, with no change of mRNA and protein expression levels of NLRP3, ASC, and pro-caspase-1 compared with the control HK-2. However, HK-2 showed a significant NLRP3 inflammasome activation and apoptosis. Importantly, knockdown of CCN1 not only aggravated NLRP3 inflammasome activation and apoptosis but also abrogated the protective effect of scutellarin in UA-induced HK-2 injury. Thus, scutellarin might alleviate HN progression via a mechanism involved in CCN1 regulation on NLRP3 inflammasome activation

    Pore structure characterization of Chang-7 tight sandstone using MICP combined with N2GA techniques and its geological control factors

    Get PDF
    Understanding the pore networks of unconventional tight reservoirs such as tight sandstones and shales is crucial for extracting oil/gas from such reservoirs. Mercury injection capillary pressure (MICP) and N(2) gas adsorption (N(2)GA) are performed to evaluate pore structure of Chang-7 tight sandstone. Thin section observation, scanning electron microscope, grain size analysis, mineral composition analysis, and porosity measurement are applied to investigate geological control factors of pore structure. Grain size is positively correlated with detrital mineral content and grain size standard deviation while negatively related to clay content. Detrital mineral content and grain size are positively correlated with porosity, pore throat radius and withdrawal efficiency and negatively related to capillary pressure and pore-to-throat size ratio; while interstitial material is negatively correlated with above mentioned factors. Well sorted sediments with high debris usually possess strong compaction resistance to preserve original pores. Although many inter-crystalline pores are produced in clay minerals, this type of pores is not the most important contributor to porosity. Besides this, pore shape determined by N(2)GA hysteresis loop is consistent with SEM observation on clay inter-crystalline pores while BJH pore volume is positively related with clay content, suggesting N(2)GA is suitable for describing clay inter-crystalline pores in tight sandstones
    • …
    corecore