159 research outputs found

    Introducing Foundation Models as Surrogate Models: Advancing Towards More Practical Adversarial Attacks

    Full text link
    Recently, the no-box adversarial attack, in which the attacker lacks access to the model's architecture, weights, and training data, become the most practical and challenging attack setup. However, there is an unawareness of the potential and flexibility inherent in the surrogate model selection process on no-box setting. Inspired by the burgeoning interest in utilizing foundational models to address downstream tasks, this paper adopts an innovative idea that 1) recasting adversarial attack as a downstream task. Specifically, image noise generation to meet the emerging trend and 2) introducing foundational models as surrogate models. Harnessing the concept of non-robust features, we elaborate on two guiding principles for surrogate model selection to explain why the foundational model is an optimal choice for this role. However, paradoxically, we observe that these foundational models underperform. Analyzing this unexpected behavior within the feature space, we attribute the lackluster performance of foundational models (e.g., CLIP) to their significant representational capacity and, conversely, their lack of discriminative prowess. To mitigate this issue, we propose the use of a margin-based loss strategy for the fine-tuning of foundational models on target images. The experimental results verify that our approach, which employs the basic Fast Gradient Sign Method (FGSM) attack algorithm, outstrips the performance of other, more convoluted algorithms. We conclude by advocating for the research community to consider surrogate models as crucial determinants in the effectiveness of adversarial attacks in no-box settings. The implications of our work bear relevance for improving the efficacy of such adversarial attacks and the overall robustness of AI systems

    Low-Mid Adversarial Perturbation against Unauthorized Face Recognition System

    Full text link
    In light of the growing concerns regarding the unauthorized use of facial recognition systems and its implications on individual privacy, the exploration of adversarial perturbations as a potential countermeasure has gained traction. However, challenges arise in effectively deploying this approach against unauthorized facial recognition systems due to the effects of JPEG compression on image distribution across the internet, which ultimately diminishes the efficacy of adversarial perturbations. Existing JPEG compression-resistant techniques struggle to strike a balance between resistance, transferability, and attack potency. To address these limitations, we propose a novel solution referred to as \emph{low frequency adversarial perturbation} (LFAP). This method conditions the source model to leverage low-frequency characteristics through adversarial training. To further enhance the performance, we introduce an improved \emph{low-mid frequency adversarial perturbation} (LMFAP) that incorporates mid-frequency components for an additive benefit. Our study encompasses a range of settings to replicate genuine application scenarios, including cross backbones, supervisory heads, training datasets, and testing datasets. Moreover, we evaluated our approaches on a commercial black-box API, \texttt{Face++}. The empirical results validate the cutting-edge performance achieved by our proposed solutions.Comment: published in Information Science

    Pre-training also Transfers Non-Robustness

    Full text link
    Pre-training has enabled state-of-the-art results on many tasks. In spite of its recognized contribution to generalization, we observed in this study that pre-training also transfers adversarial non-robustness from pre-trained model into fine-tuned model in the downstream tasks. Using image classification as an example, we first conducted experiments on various datasets and network backbones to uncover the adversarial non-robustness in fine-tuned model. Further analysis was conducted on examining the learned knowledge of fine-tuned model and standard model, and revealed that the reason leading to the non-robustness is the non-robust features transferred from pre-trained model. Finally, we analyzed the preference for feature learning of the pre-trained model, explored the factors influencing robustness, and introduced a simple robust pre-traning solution

    Unlearnable Clusters: Towards Label-agnostic Unlearnable Examples

    Full text link
    There is a growing interest in developing unlearnable examples (UEs) against visual privacy leaks on the Internet. UEs are training samples added with invisible but unlearnable noise, which have been found can prevent unauthorized training of machine learning models. UEs typically are generated via a bilevel optimization framework with a surrogate model to remove (minimize) errors from the original samples, and then applied to protect the data against unknown target models. However, existing UE generation methods all rely on an ideal assumption called label-consistency, where the hackers and protectors are assumed to hold the same label for a given sample. In this work, we propose and promote a more practical label-agnostic setting, where the hackers may exploit the protected data quite differently from the protectors. E.g., a m-class unlearnable dataset held by the protector may be exploited by the hacker as a n-class dataset. Existing UE generation methods are rendered ineffective in this challenging setting. To tackle this challenge, we present a novel technique called Unlearnable Clusters (UCs) to generate label-agnostic unlearnable examples with cluster-wise perturbations. Furthermore, we propose to leverage VisionandLanguage Pre-trained Models (VLPMs) like CLIP as the surrogate model to improve the transferability of the crafted UCs to diverse domains. We empirically verify the effectiveness of our proposed approach under a variety of settings with different datasets, target models, and even commercial platforms Microsoft Azure and Baidu PaddlePaddle. Code is available at \url{https://github.com/jiamingzhang94/Unlearnable-Clusters}.Comment: CVPR202

    Distribution-Aware Continual Test Time Adaptation for Semantic Segmentation

    Full text link
    Since autonomous driving systems usually face dynamic and ever-changing environments, continual test-time adaptation (CTTA) has been proposed as a strategy for transferring deployed models to continually changing target domains. However, the pursuit of long-term adaptation often introduces catastrophic forgetting and error accumulation problems, which impede the practical implementation of CTTA in the real world. Recently, existing CTTA methods mainly focus on utilizing a majority of parameters to fit target domain knowledge through self-training. Unfortunately, these approaches often amplify the challenge of error accumulation due to noisy pseudo-labels, and pose practical limitations stemming from the heavy computational costs associated with entire model updates. In this paper, we propose a distribution-aware tuning (DAT) method to make the semantic segmentation CTTA efficient and practical in real-world applications. DAT adaptively selects and updates two small groups of trainable parameters based on data distribution during the continual adaptation process, including domain-specific parameters (DSP) and task-relevant parameters (TRP). Specifically, DSP exhibits sensitivity to outputs with substantial distribution shifts, effectively mitigating the problem of error accumulation. In contrast, TRP are allocated to positions that are responsive to outputs with minor distribution shifts, which are fine-tuned to avoid the catastrophic forgetting problem. In addition, since CTTA is a temporal task, we introduce the Parameter Accumulation Update (PAU) strategy to collect the updated DSP and TRP in target domain sequences. We conduct extensive experiments on two widely-used semantic segmentation CTTA benchmarks, achieving promising performance compared to previous state-of-the-art methods

    Accelerate Multi-Agent Reinforcement Learning in Zero-Sum Games with Subgame Curriculum Learning

    Full text link
    Learning Nash equilibrium (NE) in complex zero-sum games with multi-agent reinforcement learning (MARL) can be extremely computationally expensive. Curriculum learning is an effective way to accelerate learning, but an under-explored dimension for generating a curriculum is the difficulty-to-learn of the subgames -- games induced by starting from a specific state. In this work, we present a novel subgame curriculum learning framework for zero-sum games. It adopts an adaptive initial state distribution by resetting agents to some previously visited states where they can quickly learn to improve performance. Building upon this framework, we derive a subgame selection metric that approximates the squared distance to NE values and further adopt a particle-based state sampler for subgame generation. Integrating these techniques leads to our new algorithm, Subgame Automatic Curriculum Learning (SACL), which is a realization of the subgame curriculum learning framework. SACL can be combined with any MARL algorithm such as MAPPO. Experiments in the particle-world environment and Google Research Football environment show SACL produces much stronger policies than baselines. In the challenging hide-and-seek quadrant environment, SACL produces all four emergent stages and uses only half the samples of MAPPO with self-play. The project website is at https://sites.google.com/view/sacl-rl

    Self-driven Grounding: Large Language Model Agents with Automatical Language-aligned Skill Learning

    Full text link
    Large language models (LLMs) show their powerful automatic reasoning and planning capability with a wealth of semantic knowledge about the human world. However, the grounding problem still hinders the applications of LLMs in the real-world environment. Existing studies try to fine-tune the LLM or utilize pre-defined behavior APIs to bridge the LLMs and the environment, which not only costs huge human efforts to customize for every single task but also weakens the generality strengths of LLMs. To autonomously ground the LLM onto the environment, we proposed the Self-Driven Grounding (SDG) framework to automatically and progressively ground the LLM with self-driven skill learning. SDG first employs the LLM to propose the hypothesis of sub-goals to achieve tasks and then verify the feasibility of the hypothesis via interacting with the underlying environment. Once verified, SDG can then learn generalized skills with the guidance of these successfully grounded subgoals. These skills can be further utilized to accomplish more complex tasks which fail to pass the verification phase. Verified in the famous instruction following task set-BabyAI, SDG achieves comparable performance in the most challenging tasks compared with imitation learning methods that cost millions of demonstrations, proving the effectiveness of learned skills and showing the feasibility and efficiency of our framework

    Online Prototype Alignment for Few-shot Policy Transfer

    Full text link
    Domain adaptation in reinforcement learning (RL) mainly deals with the changes of observation when transferring the policy to a new environment. Many traditional approaches of domain adaptation in RL manage to learn a mapping function between the source and target domain in explicit or implicit ways. However, they typically require access to abundant data from the target domain. Besides, they often rely on visual clues to learn the mapping function and may fail when the source domain looks quite different from the target domain. To address these problems, we propose a novel framework Online Prototype Alignment (OPA) to learn the mapping function based on the functional similarity of elements and is able to achieve the few-shot policy transfer within only several episodes. The key insight of OPA is to introduce an exploration mechanism that can interact with the unseen elements of the target domain in an efficient and purposeful manner, and then connect them with the seen elements in the source domain according to their functionalities (instead of visual clues). Experimental results show that when the target domain looks visually different from the source domain, OPA can achieve better transfer performance even with much fewer samples from the target domain, outperforming prior methods.Comment: This paper has been accepted at ICML202

    Contrastive Modules with Temporal Attention for Multi-Task Reinforcement Learning

    Full text link
    In the field of multi-task reinforcement learning, the modular principle, which involves specializing functionalities into different modules and combining them appropriately, has been widely adopted as a promising approach to prevent the negative transfer problem that performance degradation due to conflicts between tasks. However, most of the existing multi-task RL methods only combine shared modules at the task level, ignoring that there may be conflicts within the task. In addition, these methods do not take into account that without constraints, some modules may learn similar functions, resulting in restricting the model's expressiveness and generalization capability of modular methods. In this paper, we propose the Contrastive Modules with Temporal Attention(CMTA) method to address these limitations. CMTA constrains the modules to be different from each other by contrastive learning and combining shared modules at a finer granularity than the task level with temporal attention, alleviating the negative transfer within the task and improving the generalization ability and the performance for multi-task RL. We conducted the experiment on Meta-World, a multi-task RL benchmark containing various robotics manipulation tasks. Experimental results show that CMTA outperforms learning each task individually for the first time and achieves substantial performance improvements over the baselines.Comment: This paper has been accepted at NeurIPS 2023 as a poste
    corecore