832 research outputs found

    Observation of forbidden phonons and dark excitons by resonance Raman scattering in few-layer WS2_2

    Full text link
    The optical properties of the two-dimensional (2D) crystals are dominated by tightly bound electron-hole pairs (excitons) and lattice vibration modes (phonons). The exciton-phonon interaction is fundamentally important to understand the optical properties of 2D materials and thus help develop emerging 2D crystal based optoelectronic devices. Here, we presented the excitonic resonant Raman scattering (RRS) spectra of few-layer WS2_2 excited by 11 lasers lines covered all of A, B and C exciton transition energies at different sample temperatures from 4 to 300 K. As a result, we are not only able to probe the forbidden phonon modes unobserved in ordinary Raman scattering, but also can determine the bright and dark state fine structures of 1s A exciton. In particular, we also observed the quantum interference between low-energy discrete phonon and exciton continuum under resonant excitation. Our works pave a way to understand the exciton-phonon coupling and many-body effects in 2D materials.Comment: 14 pages, 11 figure

    Interaction between Thalamus and Hippocampus in Termination of Amygdala-Kindled Seizures in Mice

    Get PDF
    The thalamus and hippocampus have been found both involved in the initiation, propagation, and termination of temporal lobe epilepsy. However, the interaction of these regions during seizures is not clear. The present study is to explore whether some regular patterns exist in their interaction during the termination of seizures. Multichannel in vivo recording techniques were used to record the neural activities from the cornu ammonis 1 (CA1) of hippocampus and mediodorsal thalamus (MDT) in mice. The mice were kindled by electrically stimulating basolateral amygdala neurons, and Racine’s rank standard was employed to classify the stage of behavioral responses (stage 1~5). The coupling index and directionality index were used to investigate the synchronization and information flow direction between CA1 and MDT. Two main results were found in this study. (1) High levels of synchronization between the thalamus and hippocampus were observed before the termination of seizures at stage 4~5 but after the termination of seizures at stage 1~2. (2) In the end of seizures at stage 4~5, the information tended to flow from MDT to CA1. Those results indicate that the synchronization and information flow direction between the thalamus and the hippocampus may participate in the termination of seizures

    (Methanol-κO)bis­{2-meth­oxy-6-[(4-methyl­phen­yl)iminiometh­yl]phenolato-κ2 O,O′}tris­(nitrato-κ2 O,O′)lanthanum(III)

    Get PDF
    The asymmetric unit of title compound, [La(NO3)3(C15H15NO2)2(CH3OH)], consists of two Schiff base 2-meth­oxy-6-[(4-methyl­phen­yl)iminiometh­yl]phenolato (HL) ligands, three independent nitrate anions and one methanol mol­ecule coordinated to LaIII. The coordination environment of the LaIII ion is formed by eleven O atoms. Three bidentate nitrate anions coordinate to the LaIII ion, while two HL ligands chelate the metal center with O atoms from the phenolate and meth­oxy groups. The HL ligands are zwitterionic, with protonated imine N atoms. The coordination sphere is completed by one methanol mol­ecule. The protonated imine N atoms are involved in intra­molecular N—H⋯O hydrogen bonds with the phen­oxy groups and nitrate ligands. One O atom of one nitrate group is disordered over two sites of equal occupancy

    Comparison of tooth movement and biological response resulting from different force magnitudes combined with osteoperforation in rabbits

    Get PDF
    Objective: To compare tooth movement rate and histological responses with three different force magnitude designs under osteoperforation in rabbit models. Methodology: 48 rabbits were divided into three groups: Group A, Group B, and Group C, with traction force of 50 g, 100 g, 150 g, respectively. Osteoperforation was performed at the mesial of the right mandibular first premolar, the left side was not affected. One mini-screw was inserted into bones between two central incisors. Coil springs were fixed to the first premolars and the mini-screw. Tooth movement distance was calculated, and immunohistochemical staining of PCNA, OCN, VEGF, and TGF-β1 was analyzed. Results: The tooth movement distance on the surgical side was larger than the control side in all groups (P<0.01). No significant intergroup difference was observed for the surgical side in tooth movement distance among the three groups (P>0.05). For the control side, tooth movement distance in Group A was significantly smaller than Groups B and C (P<0.001); no significant difference in tooth movement distance between Group B and Group C was observed (P>0.05). On the tension area of the moving premolar, labeling of PCNA, OCN, VEGF and TGF-β1 were confirmed in alveolar bone and periodontal ligament in all groups. PCNA, OCN, VEGF and TGF-β1 on the surgical side was larger than the control side in all groups (P<0.001). Conclusion: Osteoperforation could accelerate orthodontic tooth movement rate in rabbits. Fast osteoperforation-assisted tooth movement in rabbits was achieve with light 50 g traction

    P2-136: Discrepancy of lung cancer cell growth in bone microenvironments

    Get PDF

    GmWRKY16 Enhances Drought and Salt Tolerance Through an ABA-Mediated Pathway in Arabidopsis thaliana

    Get PDF
    The WRKY transcription factors (TFs) are one of the largest families of TFs in plants and play multiple roles in plant development and stress response. In the present study, GmWRKY16 encoding a WRKY transcription factor in soybean was functionally characterized in Arabidopsis. GmWRKY16 is a nuclear protein that contains a highly conserved WRKY domain and a C2H2 zinc-finger structure, and has the characteristics of transcriptional activation ability, presenting a constitutive expression pattern with relative expression levels of over fourfold in the old leaves, flowers, seeds and roots of soybean. The results of quantitative real time polymerase chain reaction (qRT-PCR) showed that GmWRKY16 could be induced by salt, alkali, ABA, drought and PEG-6000. As compared with the control, overexpression of GmWRKY16 in Arabidopsis increased the seed germination rate and root growth of seedlings in transgenic lines under higher concentrations of mannitol, NaCl and ABA. In the meantime, GmWRKY16 transgenic lines showed over 75% survival rate after rehydration and enhanced Arabidopsis tolerance to salt and drought with higher proline and lower MDA accumulation, less water loss of the detached leaves, and accumulated more endogenous ABA than the control under stress conditions. Further studies showed that AtWRKY8, KIN1, and RD29A were induced in GmWRKY16 transgenic plants under NaCl treatment. The expressions of the ABA biosynthesis gene (NCED3), signaling genes (ABI1, ABI2, ABI4, and ABI5), responsive genes (RD29A, COR15A, COR15B, and RD22) and stress-related marker genes (KIN1, LEA14, LEA76, and CER3) were regulated in transgenic lines under drought stress. In summary, these results suggest that GmWRKY16 as a WRKY TF may promote tolerance to drought and salt stresses through an ABA-mediated pathway

    Effect of the vascular endothelial growth factor expression level on angiopoietin-2-mediated nasopharyngeal carcinoma growth

    Get PDF
    BACKGROUND: The overexpression of angiopoietin-2 (Ang-2) has both pro-tumorigenic and anti-tumorigenic effects. However, the mechanisms of this protein’s dual effects are poorly understood, and it remains unclear how Ang-2 cooperates with vascular endothelial growth factor (VEGF). In the current study, we investigated the effects of Ang-2 overexpression on nasopharyngeal carcinoma growth in the presence of different levels of VEGF. METHODS: Ang-2 was introduced into the CNE2 cell line by liposome transfection, and the expression of endogenous VEGF was inhibited by microRNA-mediated RNA interference. CNE2 cells expressing varying levels of Ang-2 and VEGF were injected subcutaneously into the flanks of nude mice. Tumor growth was measured, and vessels from the harvested tumors were analyzed. RESULTS: The overexpression of Ang-2 had no obvious effect on CNE2 tumor growth in the presence of endogenous VEGF but significantly inhibited CNE2 tumor growth when the expression of endogenous VEGF was silenced, and the Ang-2/VEGF ratio is negatively correlated with tumor growth. Ang-2 overexpression decreased the percentage of α-SMA-positive cells around the tumor vessels but reduced the microvessel density only in the absence of VEGF. CONCLUSIONS: Our results indicate that the effects of Ang-2 on nasopharyngeal carcinoma are highly dependent on the level of VEGF expression, Ang-2/VEGF ratio may offer a novel therapeutic approach for treating human cancer

    Structured Light Modal Interface via Liquid-Crystal Planar Optics

    Full text link
    Recent advances in planar optics with geometric-phase superstructures have brought a new paradigm in the control of structured light and, in particular, has substantially enhanced the capabilities of generating and detecting orbital angular momentum (OAM) states of light and associated spatial modes. However, the structured modal interface that can reciprocally link OAM states via adiabatic control and access-associated higher-order geometric phase remains absent in planar optics. In this work, we propose and experimentally demonstrate a planar optical astigmatic retarder fabricated with liquid-crystal (LC) geometric phase. The LC superstructure was designed with the principle of fractional Fourier transformation and is capable of reciprocal conversion between all possible OAM states on the same modal sphere. Such a planar device paves the way towards an easily deployed modal interface of paraxial OAM states, unlocks the resource of higher-order geometric phase, and has promising applications in high-dimensional classical/quantum information

    A new nursing pattern based on ERAS concept for patients with lumbar degenerative diseases treated with OLIF surgery: A retrospective study

    Get PDF
    ObjectiveThe purpose of this study was to introduce enhanced recovery after surgery (ERAS) concept into patients with lumbar degenerative diseases who were treated with oblique lumbar interbody fusion (OLIF), and to assess whether it could increase clinical efficacy, reduce perioperative complications, shorten length of hospital stay (LHS), decrease readmission rate, and improve patient satisfaction.MethodsThe study included patients with lumbar degenerative diseases (LDDs) who underwent OLIF between July 2017 and October 2018 (non-ERAS group), and between November 2018 and July 2020 (ERAS group). The two groups were compared according to the demographic and clinical characteristics.ResultsThere was no significant difference in descriptive characteristics and concomitant diseases between the two groups. The preoperative Oswestry disability index (ODI) score (P = 0.191), lumbar visual analogue scale (VAS) score (P = 0.470), and leg VAS score (P = 0.657) did not significantly different. Most of the ERAS measures were also well implemented after surgery, except for early delivery (74.2%), early catheter removal (63.9%), and multimodal analgesia (80.6%). The LHS in the ERAS group was significantly shorter than that in the non-ERAS group (P = 0.004). Besides, Hamilton Anxiety Rating Scale (HAMA) score at 3 days after surgery showed a significant difference between the two groups (P = 0.019). The patient satisfaction in ERAS group was significantly higher than that in the non-ERAS group (P = 0.001).ConclusionThe new nursing pattern combined with ERAS in patients with LDDs who underwent OLIF did not improve the short-term prognosis of surgery, while it could effectively reduce postoperative complications, shorten the LHS, and improve patient satisfaction, and did not lead to additional adverse events
    corecore