8 research outputs found

    Supplemental Material, Demonstration_Video - Model-mediated teleoperation with improved stability

    No full text
    <p>Supplemental Material, Demonstration_Video for Model-mediated teleoperation with improved stability by Jingzhou Song, Yukun Ding, Zhihao Shang and Ji Liang in International Journal of Advanced Robotic Systems</p

    A Universal Biomolecular Concentrator To Enhance Biomolecular Surface Binding Based on Acoustic NEMS Resonator

    No full text
    In designing bioassay systems for low-abundance biomolecule detection, most research focuses on improving transduction mechanisms while ignoring the intrinsically fundamental limitations in solution: mass transfer and binding affinity. We demonstrate enhanced biomolecular surface binding using an acoustic nano-electromechanical system (NEMS) resonator, as an on-chip biomolecular concentrator which breaks both mass transfer and binding affinity limitations. As a result, a concentration factor of 10<sup>5</sup> has been obtained for various biomolecules. The resultantly enhanced surface binding between probes on the absorption surface and analytes in solution enables us to lower the limit of detection for representative proteins. We also integrated the biomolecular concentrator into an optoelectronic bioassay platform to demonstrate delivery of proteins from buffer/serum to the absorption surface. Since the manufacture of the resonator is CMOS-compatible, we expect it to be readily applied to further analysis of biomolecular interactions in molecular diagnostics

    A Universal Biomolecular Concentrator To Enhance Biomolecular Surface Binding Based on Acoustic NEMS Resonator

    No full text
    In designing bioassay systems for low-abundance biomolecule detection, most research focuses on improving transduction mechanisms while ignoring the intrinsically fundamental limitations in solution: mass transfer and binding affinity. We demonstrate enhanced biomolecular surface binding using an acoustic nano-electromechanical system (NEMS) resonator, as an on-chip biomolecular concentrator which breaks both mass transfer and binding affinity limitations. As a result, a concentration factor of 10<sup>5</sup> has been obtained for various biomolecules. The resultantly enhanced surface binding between probes on the absorption surface and analytes in solution enables us to lower the limit of detection for representative proteins. We also integrated the biomolecular concentrator into an optoelectronic bioassay platform to demonstrate delivery of proteins from buffer/serum to the absorption surface. Since the manufacture of the resonator is CMOS-compatible, we expect it to be readily applied to further analysis of biomolecular interactions in molecular diagnostics

    A Universal Biomolecular Concentrator To Enhance Biomolecular Surface Binding Based on Acoustic NEMS Resonator

    No full text
    In designing bioassay systems for low-abundance biomolecule detection, most research focuses on improving transduction mechanisms while ignoring the intrinsically fundamental limitations in solution: mass transfer and binding affinity. We demonstrate enhanced biomolecular surface binding using an acoustic nano-electromechanical system (NEMS) resonator, as an on-chip biomolecular concentrator which breaks both mass transfer and binding affinity limitations. As a result, a concentration factor of 10<sup>5</sup> has been obtained for various biomolecules. The resultantly enhanced surface binding between probes on the absorption surface and analytes in solution enables us to lower the limit of detection for representative proteins. We also integrated the biomolecular concentrator into an optoelectronic bioassay platform to demonstrate delivery of proteins from buffer/serum to the absorption surface. Since the manufacture of the resonator is CMOS-compatible, we expect it to be readily applied to further analysis of biomolecular interactions in molecular diagnostics

    A Universal Biomolecular Concentrator To Enhance Biomolecular Surface Binding Based on Acoustic NEMS Resonator

    No full text
    In designing bioassay systems for low-abundance biomolecule detection, most research focuses on improving transduction mechanisms while ignoring the intrinsically fundamental limitations in solution: mass transfer and binding affinity. We demonstrate enhanced biomolecular surface binding using an acoustic nano-electromechanical system (NEMS) resonator, as an on-chip biomolecular concentrator which breaks both mass transfer and binding affinity limitations. As a result, a concentration factor of 10<sup>5</sup> has been obtained for various biomolecules. The resultantly enhanced surface binding between probes on the absorption surface and analytes in solution enables us to lower the limit of detection for representative proteins. We also integrated the biomolecular concentrator into an optoelectronic bioassay platform to demonstrate delivery of proteins from buffer/serum to the absorption surface. Since the manufacture of the resonator is CMOS-compatible, we expect it to be readily applied to further analysis of biomolecular interactions in molecular diagnostics

    A Universal Biomolecular Concentrator To Enhance Biomolecular Surface Binding Based on Acoustic NEMS Resonator

    No full text
    In designing bioassay systems for low-abundance biomolecule detection, most research focuses on improving transduction mechanisms while ignoring the intrinsically fundamental limitations in solution: mass transfer and binding affinity. We demonstrate enhanced biomolecular surface binding using an acoustic nano-electromechanical system (NEMS) resonator, as an on-chip biomolecular concentrator which breaks both mass transfer and binding affinity limitations. As a result, a concentration factor of 10<sup>5</sup> has been obtained for various biomolecules. The resultantly enhanced surface binding between probes on the absorption surface and analytes in solution enables us to lower the limit of detection for representative proteins. We also integrated the biomolecular concentrator into an optoelectronic bioassay platform to demonstrate delivery of proteins from buffer/serum to the absorption surface. Since the manufacture of the resonator is CMOS-compatible, we expect it to be readily applied to further analysis of biomolecular interactions in molecular diagnostics

    Hierarchically Mesostructured Aluminum Current Collector for Enhancing the Performance of Supercapacitors

    No full text
    Aluminum (Al) current collector is one of the most important components of supercapacitors, and its performance has vital effects on the electrochemical performance and cyclic stability of supercapacitors. In the present work, a scalable and low-cost, yet highly efficient, picosecond laser processing method of Al current collectors was developed to improve the overall performance of supercapacitors. The laser treatment resulted in hierarchical micro–nanostructures on the surface of the commercial Al foil and reduced the surface oxygen content of the foil. The electrochemical performance of the Al foil with the micro–nanosurface structures was examined in the symmetrical activated carbon-based coin supercapacitors with an organic electrolyte. The results suggest that the laser-treated Al foil (laser-Al) increased the capacitance density of supercapacitors up to 110.1 F g<sup>–1</sup> and promoted the rate capability due to its low contact resistance with the carbonaceous electrode and high electrical conductivity derived from its larger specific surface areas and deoxidized surface. In addition, the capacitor with the laser-Al current collector exhibited high cyclic stability with 91.5% capacitance retention after 10 000 cycles, 21.3% higher than that with pristine-Al current collector due to its stronger bonding with the carbonaceous electrode that prevented any delamination during aging. Our work has provided a new strategy for improving the electrochemical performance of supercapacitors

    Hierarchically Mesostructured Aluminum Current Collector for Enhancing the Performance of Supercapacitors

    No full text
    Aluminum (Al) current collector is one of the most important components of supercapacitors, and its performance has vital effects on the electrochemical performance and cyclic stability of supercapacitors. In the present work, a scalable and low-cost, yet highly efficient, picosecond laser processing method of Al current collectors was developed to improve the overall performance of supercapacitors. The laser treatment resulted in hierarchical micro–nanostructures on the surface of the commercial Al foil and reduced the surface oxygen content of the foil. The electrochemical performance of the Al foil with the micro–nanosurface structures was examined in the symmetrical activated carbon-based coin supercapacitors with an organic electrolyte. The results suggest that the laser-treated Al foil (laser-Al) increased the capacitance density of supercapacitors up to 110.1 F g<sup>–1</sup> and promoted the rate capability due to its low contact resistance with the carbonaceous electrode and high electrical conductivity derived from its larger specific surface areas and deoxidized surface. In addition, the capacitor with the laser-Al current collector exhibited high cyclic stability with 91.5% capacitance retention after 10 000 cycles, 21.3% higher than that with pristine-Al current collector due to its stronger bonding with the carbonaceous electrode that prevented any delamination during aging. Our work has provided a new strategy for improving the electrochemical performance of supercapacitors
    corecore