11 research outputs found
Discriminating between anticipatory and visually triggered saccades:measuring minimal visual saccadic response time using luminance
We describe a novel behavioral method to accurately discriminate anticipatory (i.e., saccades not generated by visual input) from visually triggered saccades and to identify the minimal visual saccadic reaction time (SRT). This method can be used to calculate a feasible lower bound cutoff for latencies of visually triggered saccades within a certain experimental context or participant group. We apply this method to compute the minimal visual SRT for two different saccade target luminance levels. Three main findings are presented: 1) the minimal visual SRT for all participants was 46 ms shorter for bright targets than for dim targets, 2) the transition from non-visually triggered to visually triggered saccades occurred abruptly, independent of target luminance, and 3) although the absolute minimal visual SRTs varied between participants, the response pattern (response to bright targets being faster than to dim targets) was consistent across participants. These results are consistent with variability in saccadic and neural responses to luminance as has been reported in monkeys. On the basis of these results, we argue that differences in the minimal visual SRT can easily occur when stimuli vary in luminance or other saliency features. Applying an absolute cutoff (i.e., 70-90 ms) that approaches the minimal neuronal conduction delays, which is general practice in many laboratories, may result in the wrongful inclusion of saccades that are not visually triggered. It is suggested to assess the lower SRT bound for visually triggered saccades when piloting an experimental setup and before including saccades based on particular latency criteria. NEW & NOTEWORTHY We successfully developed an anticipation paradigm to discriminate between anticipatory and visually triggered saccades by measuring the minimal visual saccadic response time (SRT). We show that the 70- to 90-ms lower bound cutoff for visually triggered saccades should be applied in a flexible way and that the transitional interval is very short. The paradigm can be employed to investigate the effects of different stimulus features, experimental conditions, and participant groups on the minimal visual SRT in humans
The influence of distractors on express saccades
It is well known that regular target-driven saccades are affected by the presence of close and remote distractors. Distractors close to the target affect the saccade landing position (known as the global effect), while remote distractors prolong saccade latencies to the target (known as the remote-distractor effect). Little is known about whether a different population of saccades known as express saccades (saccades with very short latencies between 80 and 130 ms) is similarly affected by close and remote distractors, as these saccades are considered to be the result of advanced preparation of an oculomotor program toward the target. We designed a task in which we were able to generate a large number of express saccades, as evidenced by a separate and very early peak in the saccade-latency distribution-a distribution that was different from that of regular saccades. Our results show that irrelevant and unexpected visual input had a large effect on express saccades. We found a global and a remote-distractor effect which were similar to those seen in regular saccades. Even though our findings confirm the existence of very-short-latency saccades in humans, it is questionable whether they represent a different population of saccades, as they were equally affected by the presence of distractors as are regular saccades
Discriminating between anticipatory and visually triggered saccades : Measuring minimal visual saccadic response time using luminance
We describe a novel behavioral method to accurately discriminate anticipatory (i.e., saccades not generated by visual input) from visually triggered saccades and to identify the minimal visual saccadic reaction time (SRT). This method can be used to calculate a feasible lower bound cutoff for latencies of visually triggered saccades within a certain experimental context or participant group. We apply this method to compute the minimal visual SRT for two different saccade target luminance levels. Three main findings are presented: 1) the minimal visual SRT for all participants was 46 ms shorter for bright targets than for dim targets, 2) the transition from non-visually triggered to visually triggered saccades occurred abruptly, independent of target luminance, and 3) although the absolute minimal visual SRTs varied between participants, the response pattern (response to bright targets being faster than to dim targets) was consistent across participants. These results are consistent with variability in saccadic and neural responses to luminance as has been reported in monkeys. On the basis of these results, we argue that differences in the minimal visual SRT can easily occur when stimuli vary in luminance or other saliency features. Applying an absolute cutoff (i.e., 70-90 ms) that approaches the minimal neuronal conduction delays, which is general practice in many laboratories, may result in the wrongful inclusion of saccades that are not visually triggered. It is suggested to assess the lower SRT bound for visually triggered saccades when piloting an experimental setup and before including saccades based on particular latency criteria. NEW & NOTEWORTHY We successfully developed an anticipation paradigm to discriminate between anticipatory and visually triggered saccades by measuring the minimal visual saccadic response time (SRT). We show that the 70- to 90-ms lower bound cutoff for visually triggered saccades should be applied in a flexible way and that the transitional interval is very short. The paradigm can be employed to investigate the effects of different stimulus features, experimental conditions, and participant groups on the minimal visual SRT in humans
Discriminating between anticipatory and visually triggered saccades : Measuring minimal visual saccadic response time using luminance
We describe a novel behavioral method to accurately discriminate anticipatory (i.e., saccades not generated by visual input) from visually triggered saccades and to identify the minimal visual saccadic reaction time (SRT). This method can be used to calculate a feasible lower bound cutoff for latencies of visually triggered saccades within a certain experimental context or participant group. We apply this method to compute the minimal visual SRT for two different saccade target luminance levels. Three main findings are presented: 1) the minimal visual SRT for all participants was 46 ms shorter for bright targets than for dim targets, 2) the transition from non-visually triggered to visually triggered saccades occurred abruptly, independent of target luminance, and 3) although the absolute minimal visual SRTs varied between participants, the response pattern (response to bright targets being faster than to dim targets) was consistent across participants. These results are consistent with variability in saccadic and neural responses to luminance as has been reported in monkeys. On the basis of these results, we argue that differences in the minimal visual SRT can easily occur when stimuli vary in luminance or other saliency features. Applying an absolute cutoff (i.e., 70-90 ms) that approaches the minimal neuronal conduction delays, which is general practice in many laboratories, may result in the wrongful inclusion of saccades that are not visually triggered. It is suggested to assess the lower SRT bound for visually triggered saccades when piloting an experimental setup and before including saccades based on particular latency criteria. NEW & NOTEWORTHY We successfully developed an anticipation paradigm to discriminate between anticipatory and visually triggered saccades by measuring the minimal visual saccadic response time (SRT). We show that the 70- to 90-ms lower bound cutoff for visually triggered saccades should be applied in a flexible way and that the transitional interval is very short. The paradigm can be employed to investigate the effects of different stimulus features, experimental conditions, and participant groups on the minimal visual SRT in humans
Oculomotor interference of bimodal distractors
When executing an eye movement to a target location, the presence of an irrelevant distracting stimulus can influence the saccade metrics and latency. The present study investigated the influence of distractors of different sensory modalities (i.e. auditory, visual and audiovisual) which were presented at various distances (i.e. close or remote) from a visual target. The interfering effects of a bimodal distractor were more pronounced in the spatial domain than in the temporal domain. The results indicate that the direction of interference depended on the spatial layout of the visual scene. The close bimodal distractor caused the saccade endpoint and saccade trajectory to deviate towards the distractor whereas the remote bimodal distractor caused a deviation away from the distractor. Furthermore, saccade averaging and trajectory deviation evoked by a bimodal distractor was larger compared to the effects evoked by a unimodal distractor. This indicates that a bimodal distractor evoked stronger spatial oculomotor competition compared to a unimodal distractor and that the direction of the interference depended on the distance between the target and the distractor. Together, these findings suggest that the oculomotor vector to irrelevant bimodal input is enhanced and that the interference by multisensory input is stronger compared to unisensory input
Oculomotor interference of bimodal distractors
AbstractWhen executing an eye movement to a target location, the presence of an irrelevant distracting stimulus can influence the saccade metrics and latency. The present study investigated the influence of distractors of different sensory modalities (i.e. auditory, visual and audiovisual) which were presented at various distances (i.e. close or remote) from a visual target. The interfering effects of a bimodal distractor were more pronounced in the spatial domain than in the temporal domain. The results indicate that the direction of interference depended on the spatial layout of the visual scene. The close bimodal distractor caused the saccade endpoint and saccade trajectory to deviate towards the distractor whereas the remote bimodal distractor caused a deviation away from the distractor. Furthermore, saccade averaging and trajectory deviation evoked by a bimodal distractor was larger compared to the effects evoked by a unimodal distractor. This indicates that a bimodal distractor evoked stronger spatial oculomotor competition compared to a unimodal distractor and that the direction of the interference depended on the distance between the target and the distractor. Together, these findings suggest that the oculomotor vector to irrelevant bimodal input is enhanced and that the interference by multisensory input is stronger compared to unisensory input
Oculomotor interference of bimodal distractors
When executing an eye movement to a target location, the presence of an irrelevant distracting stimulus can influence the saccade metrics and latency. The present study investigated the influence of distractors of different sensory modalities (i.e. auditory, visual and audiovisual) which were presented at various distances (i.e. close or remote) from a visual target. The interfering effects of a bimodal distractor were more pronounced in the spatial domain than in the temporal domain. The results indicate that the direction of interference depended on the spatial layout of the visual scene. The close bimodal distractor caused the saccade endpoint and saccade trajectory to deviate towards the distractor whereas the remote bimodal distractor caused a deviation away from the distractor. Furthermore, saccade averaging and trajectory deviation evoked by a bimodal distractor was larger compared to the effects evoked by a unimodal distractor. This indicates that a bimodal distractor evoked stronger spatial oculomotor competition compared to a unimodal distractor and that the direction of the interference depended on the distance between the target and the distractor. Together, these findings suggest that the oculomotor vector to irrelevant bimodal input is enhanced and that the interference by multisensory input is stronger compared to unisensory input