33 research outputs found

    Comprehensive and comparative metabolomic profiling of wheat, barley, oat and rye using gas chromatography-mass spectrometry and advanced chemometrics

    Get PDF
    Beyond the main bulk components of cereals such as the polysaccharides and proteins, lower concentration secondary metabolites largely contribute to the nutritional value. This paper outlines a comprehensive protocol for GC-MS metabolomic profiling of phenolics and organic acids in grains, the performance of which is demonstrated through a comparison of the metabolite profiles of the main northern European cereal crops: wheat, barley, oat and rye. Phenolics and organic acids were extracted using acidic hydrolysis, trimethylsilylated using a new method based on trimethylsilyl cyanide and analyzed by GC-MS. In order to extract pure metabolite peaks, the raw chromatographic data were processed by a multi-way decomposition method, Parallel Factor Analysis 2. This approach lead to the semi-quantitative detection of a total of 247 analytes, out of which 89 were identified based on RI and EI-MS library match. The cereal metabolome included 32 phenolics, 30 organic acids, 10 fatty acids, 11 carbohydrates and 6 sterols. The metabolome of the four cereals were compared in detail, including low concentration phenolics and organic acids. Rye and oat displayed higher total concentration of phenolic acids, but ferulic, caffeic and sinapinic acids and their esters were found to be the main phenolics in all four cereals. Compared to the previously reported methods, the outlined protocol provided an efficient and high throughput analysis of the cereal metabolome and the acidic hydrolysis improved the detection of conjugated phenolics

    Identification of weak and gender specific effects in a short 3 weeks intervention study using barley and oat mixed linkage β-glucan dietary supplements:a human fecal metabolome study by GC-MS

    Get PDF
    Introduction: Mixed-linkage (1\ue2\u86\u923),(1\ue2\u86\u924)-\uce\ub2-d-glucans (BG) reduce cholesterol level and insulin response in humans. Despite this, their role in human metabolism and a mode of action remains largely unknown. Objectives: To investigate the effects of three structurally different BG on human fecal metabolome in a full cross-over intervention using GC-MS metabolomics. Methods: Over three weeks of intervention, young healthy adults received food supplemented with BG from oat, two different BG from barley or a non-fiber control in a full cross-over design. Untargeted metabolomics and short chain fatty acid analysis was performed on day three fecal samples. ANOVA-simultaneous component analysis was applied to partition the data variation according to the study design, and PLS-DA was used to select most discriminative metabolite markers. Results: Univariate and multivariate data analysis revealed a dominating effect of inter-individual variances followed by a gender effect. Weak effects of BG intake were identified including an increased level of gamma-amino-butyrate and palmitoleic acid in males and a decreased level of enterolactone in females. Barley and oat derived BG were found to influence the human fecal metabolome differently. Barley BG increased the relative level of formate in males and isobutyrate, isovalerate, 2-methylbutyrate in females. In total 15, 3 and 11 human fecal metabolites were significantly different between control vs. BG, control vs. oat BG, and barley BG vs. oat BG, respectively. Conclusions: The study show that human fecal metabolome largely reflects individual (\ue2\u88\ubc28% variation) and gender (\ue2\u88\ubc15% variation) differences, whereas the treatment\uc2\ua0effect of the BG (\ue2\u88\ubc8% variation) only manifests in a few key metabolites (primarily by the metabolites: d-2-aminobutyric acid, palmitoleic acid, linoleic acid and 11-eicosenoic acid)
    corecore