5 research outputs found

    Using mobile technology to provide outdoor modelling tasks - the MathCityMap-Project

    Get PDF
    Linking mathematics with reality is not new. It is also not new to use outdoor activities to learn mathematics. It seems to be new, to combine such mathematical outdoor activities with mobile technology, like the geocache community which makes use of GPS technology to guide their members to special places and points of interest. The use of mobile technologies to learn at any time and any location is known as “mobile learning”. This type of learning can be seen as an extension of eLearning. Considering the definition of O’Malley one notices that this definition does not exactly match with the idea of the MathCityMap-Project (MCM), because the learning environment in the MCM-Project is predetermined. Combined with the math trail method the project enables mobile learning within math trails with latest technology.In the MCM-Project students experience mathematics at real places and within real situations in out-of-school activities,with help of GPS-enabled smartphones and special math problems. In contrast to the paper versions of math trails we are able to give direct feedback on the solutions by using “mobile devices” such as smartphones or tablets. If the user has difficulties in solving the modeling task, stepped hints can be provided. The teacher is able to use the MCM-Portal to upload tasks developed by himself or by his students and he is also able to build a personal math trail for his students

    The role of indocyanine green fluoroscopy for intraoperative bile duct visualization during laparoscopic cholecystectomy: an observational cohort study in 70 patients

    No full text
    Abstract Background Bile duct injury is the most feared complication during laparoscopic cholecystectomy. Real-time intraoperative imaging using indocyanine green (ICG) might reduce the risk of bile duct injury by improving visualization of the biliary tree during laparoscopic cholecystectomy. We compared the outcomes of laparoscopic cholecystectomy in patients with and without real-time ICG. Methods A retrospective analysis of the data of patients undergoing laparoscopic cholecystectomy with and without ICG in a referral centre for minimally invasive surgery was performed. We hypothesized that laparoscopic cholecystectomy with real-time ICG enables a better identification of the biliary tree and thus increases surgical safety. The outcomes of laparoscopic cholecystectomy with and without ICG were compared using the duration of surgery, the rate of bile duct injury, the rate of conversion, complications and the length of stay. Results Seventy patients including 29 with and 41 without ICG underwent laparoscopic cholecystectomy within the period of investigation. The median duration of surgery was 53.0 vs. 54.0 min while the median length of stay was 2.0 d in the group with and without ICG respectively. The rate of conversion was 2.4% in the group without ICG, while no conversion was performed in the group with ICG. NO bile duct injury occurred in both groups. These differences were not statistically significant. Conclusion Laparoscopic cholecystectomy with real-time indocyanine green fluorescence cholangiography enables a better visualization and identification of biliary tree and therefore should be considered as a means of increasing the safety of laparoscopic cholecystectomy
    corecore