1,409 research outputs found

    Nonparametric Methods in Astronomy: Think, Regress, Observe -- Pick Any Three

    Get PDF
    Telescopes are much more expensive than astronomers, so it is essential to minimize required sample sizes by using the most data-efficient statistical methods possible. However, the most commonly used model-independent techniques for finding the relationship between two variables in astronomy are flawed. In the worst case they can lead without warning to subtly yet catastrophically wrong results, and even in the best case they require more data than necessary. Unfortunately, there is no single best technique for nonparametric regression. Instead, we provide a guide for how astronomers can choose the best method for their specific problem and provide a python library with both wrappers for the most useful existing algorithms and implementations of two new algorithms developed here.Comment: 19 pages, PAS

    A higher-order active contour model of a `gas of circles' and its application to tree crown extraction

    Get PDF
    Many image processing problems involve identifying the region in the image domain occupied by a given entity in the scene. Automatic solution of these problems requires models that incorporate significant prior knowledge about the shape of the region. Many methods for including such knowledge run into difficulties when the topology of the region is unknown a priori, for example when the entity is composed of an unknown number of similar objects. Higher-order active contours (HOACs) represent one method for the modelling of non-trivial prior knowledge about shape without necessarily constraining region topology, via the inclusion of non-local interactions between region boundary points in the energy defining the model. The case of an unknown number of circular objects arises in a number of domains, e.g. medical, biological, nanotechnological, and remote sensing imagery. Regions composed of an a priori unknown number of circles may be referred to as a `gas of circles'. In this report, we present a HOAC model of a `gas of circles'. In order to guarantee stable circles, we conduct a stability analysis via a functional Taylor expansion of the HOAC energy around a circular shape. This analysis fixes one of the model parameters in terms of the others and constrains the rest. In conjunction with a suitable likelihood energy, we apply the model to the extraction of tree crowns from aerial imagery, and show that the new model outperforms other techniques

    How to Recover a Qubit That Has Fallen Into a Black Hole

    Get PDF
    We demonstrate an algorithm for the retrieval of a qubit, encoded in spin angular momentum, that has been dropped into a no-firewall black hole. Retrieval is achieved analogously to quantum teleportation by collecting Hawking radiation and performing measurements on the black hole. Importantly, these methods only require the ability to perform measurements from outside the event horizon.Comment: 6 pages v2: modified protocol to discuss total angular momentum, corrected typos, added references v3: updated with referee feedbac

    Numerical inversion of SRNFs for efficient elastic shape analysis of star-shaped objects.

    Get PDF
    The elastic shape analysis of surfaces has proven useful in several application areas, including medical image analysis, vision, and graphics. This approach is based on defining new mathematical representations of parameterized surfaces, including the square root normal field (SRNF), and then using the L2 norm to compare their shapes. Past work is based on using the pullback of the L2 metric to the space of surfaces, performing statistical analysis under this induced Riemannian metric. However, if one can estimate the inverse of the SRNF mapping, even approximately, a very efficient framework results: the surfaces, represented by their SRNFs, can be efficiently analyzed using standard Euclidean tools, and only the final results need be mapped back to the surface space. Here we describe a procedure for inverting SRNF maps of star-shaped surfaces, a special case for which analytic results can be obtained. We test our method via the classification of 34 cases of ADHD (Attention Deficit Hyperactivity Disorder), plus controls, in the Detroit Fetal Alcohol and Drug Exposure Cohort study. We obtain state-of-the-art results
    corecore