6 research outputs found

    A Survey of Exchange Rate Fluctuation on Tea Export Earnings among Smallholder Tea Factories in Kenya

    Get PDF
    Foreign exchange earnings are normally translated to local currency. The Kenya shilling will allow the exporter to meet local obligations which are denominated in local currency. There is always period between which transactions are concluded and the time payment is received. It is rare for the exchange rate at the time of receipt to be equal to the exchange rate when the transaction took place. The differences in the two rates will lead to either an exchange gain or exchange loss. Tea Export Trade at Mombasa Tea Auction is conducted in US dollar being the official hard currency in accordance with Kenya Government Policy as per Exchange Control Circular No. 5/92/13 of 15/10/92 (EATTA, 2010). The dollar being the official hard currency at Mombasa Tea Auction could affect earnings among tea exporters in Kenya. This study sets out on a survey to establish how earnings among smallholder tea factories is affected by this arrangement. The smallholder tea factories are managed by KTDA Ltd on behalf of smallholder tea growers. Keywords: Kenya Shilling, Tea Export, Exchange Rate, US Dollar, Export Earning

    Simulation of Grain Quantity, Fan and Solar Collector Sizes for an Experimental Forced Convection Grain Dryer

    Get PDF
    Forced convection grain dryers are more efficient and achieve greater drying rates than natural convection dryers. However, it is necessary to dry an appropriate grain layer thickness in such a dryer for the drying process to occur efficiently and at an appropriate rate. A well sized fan is also essential if the drying process is to proceed effectively. An oversize fan will be unnecessarily expensive to buy and operate due to high fan power, while an undersized one will not be able to supply adequate air flow. The solar collector must be properly sized if it is to heat the air to the required temperature. All these factors need to be addressed during the design of a grain dryer. Lengthy and expensive trial and error processes can be avoided by applying simulation in the design process. This study developed an experimental grain dryer, addressing the above mentioned issues in the process. Simulation of air flow within an initial model of the dryer was done and the results used to size the fan and drying cabinet. The solar collector was also sized. The experimental grain dryer developed consisted of a drying cabinet of dimensions 0.5 m x 0.5 m x 1.0 m and was equipped with a 0.039 kW centrifugal fan. The solar collector area was of dimensions 1.2 m x 1.8 m

    Energy Production Analysis and Optimization of Mini-Grid in Remote Areas: The Case Study of Habaswein, Kenya

    Get PDF
    Rural electrification in remote areas of developing countries has several challenges which hinder energy access to the population. For instance, the extension of the national grid to provide electricity in these areas is largely not viable. The Kenyan Government has put a target to achieve universal energy access by the year 2020. To realize this objective, the focus of the program is being shifted to establishing off-grid power stations in rural areas. Among rural areas to be electrified is Habaswein, which is a settlement in Kenya’s northeastern region without connection to the national power grid, and where Kenya Power installed a stand-alone hybrid mini-grid. Based on field observations, power generation data analysis, evaluation of the potential energy resources and simulations, this research intends to evaluate the performance of the Habaswein mini-grid and optimize the existing hybrid generation system to enhance its reliability and reduce the operation costs. The result will be a suggestion of how Kenyan rural areas could be sustainably electrified by using renewable energy based off-grid power stations. It will contribute to bridge the current research gap in this area, and it will be a vital tool to researchers, implementers and the policy makers in energy sector

    Models and experiments for energy consumption and quality of green tea drying

    No full text
    An experimental apparatus has been developed to evaluate the drying process of green tea leaves. Tea drying is an energy-intensive process which results in the removal of leaf moisture, it is essential to the quality of the final product. In order to more efficiently use process energy, a prototype drying system has been built and tested. The prototype incorporates a rotating perforated drum which helps speed the drying process. Experiments were carried out with multiple temperatures, airflow rates, and drum rotation rates, a subset of those results is shown here. In particular, the impact of airflow rate on the process was studied. It was found that as the airflow increased, the drying rate increased, as expected. However, the efficiency of energy use, which was quantified by the Specific Energy Consumption rate, varied considerably with flow. While higher flows led to faster drying, it resulted in a lower energy efficiency. Also, a two parameter predictive model was developed that was able to accurately match the moisture removal rates for a very wide range of flows. This predictive model, which is based on thermal-fluid fundamentals, can be used to extrapolate the presented results to cases which were not considered

    Energy production analysis and optimization of Mini-Grid in remote areas: the case study of Habaswein, Kenya

    No full text
    Rural electrification in remote areas of developing countries has several challenges which hinder energy access to the population. For instance, the extension of the national grid to provide electricity in these areas is largely not viable. The Kenyan Government has put a target to achieve universal energy access by the year 2020. To realize this objective, the focus of the program is being shifted to establishing off-grid power stations in rural areas. Among rural areas to be electrified is Habaswein, which is a settlement in Kenya’s northeastern region without connection to the national power grid, and where Kenya Power installed a stand-alone hybrid mini-grid. Based on field observations, power generation data analysis, evaluation of the potential energy resources and simulations, this research intends to evaluate the performance of the Habaswein mini-grid and optimize the existing hybrid generation system to enhance its reliability and reduce the operation costs. The result will be a suggestion of how Kenyan rural areas could be sustainably electrified by using renewable energy based off-grid power stations. It will contribute to bridge the current research gap in this area, and it will be a vital tool to researchers, implementers and the policy makers in energy sector
    corecore