5 research outputs found

    Specific Multiplex Analysis of Pathogens Using a Direct 16S rRNA Hybridization in Microarray System

    No full text
    For the rapid multiplex analysis of pathogens, 16S rRNAs from cell lysates were directly applied onto a DNA microarray at room temperature (RT) for RNA–DNA hybridization. To eliminate the labeling step, seven fluorescent-labeled detector probes were cohybridized with 16S rRNA targets and adjacent specific capture probes. We found that eight pathogens were successfully discriminated by the 16S rRNA-based direct method, which showed greater specificity than the polymerase chain reaction (PCR)-labeled method due to chaperone and distance effects. A new specificity criterion for a perfect match between RNA and DNA was suggested to be 21–41% dissimilarity using correlation analysis between the mismatch and the sequence according to the guanine–cytosine (GC) percentage or the distribution of mismatches. Six categories of food matrix (egg, meat, milk, rice, vegetable, and mixed) were also tested, and the target pathogen was successfully discriminated within statistically significant levels. Finally, we found that the intrinsic abundance of 16S rRNA molecules successfully substituted PCR-based amplification with a low limit of detection of 10–10<sup>3</sup> cells mL<sup>–1</sup> and a high quantitative linear correlation. Collectively, our suggested 16S rRNA-based direct method enables the highly sensitive, specific, and quantitative analysis of selected pathogens at RT within 2 h, even in food samples

    Electrosprayable Levan-Coated Nanoclusters and Ultrasound-Responsive Drug Delivery for Cancer Therapy

    No full text
    In this study, we synthesized levan shell hydrophobic silica nanoclusters encapsulating doxorubicin (L-HSi-Dox) and evaluated their potential as ultrasound-responsive drug delivery systems for cancer treatment. L-HSi-Dox nanoclusters were successfully fabricated by integrating a hydrophobic silica nanoparticle-doxorubicin complex as the core and an amphiphilic levan carbohydrate polymer as the shell by using an electrospray technique. Characterization analyses confirmed the stability, size, and composition of the nanoclusters. In particular, the nanoclusters exhibited a controlled release of Dox under aqueous conditions, demonstrating their potential as efficient drug carriers. The levanic groups of the nanoclusters enhanced the targeted delivery of Dox to specific cancer cells. Furthermore, the synergism between the nanoclusters and ultrasound effectively reduced cell viability and induced cell death, particularly in the GLUT5-overexpressing MDA-MB-231 cells. In a tumor xenograft mouse model, treatment with the nanoclusters and ultrasound significantly reduced the tumor volume and weight without affecting the body weight. Collectively, these results highlight the potential of the L-HSi-Dox nanoclusters and ultrasound as promising drug delivery systems with an enhanced therapeutic efficacy for biomedical applications

    Surface Design of Eu-Doped Iron Oxide Nanoparticles for Tuning the Magnetic Relaxivity

    No full text
    Relaxivity tuning of nanomaterials with the intrinsic <i>T</i><sub>1</sub>–<i>T</i><sub>2</sub> dual-contrast ability has great potential for MRI applications. Until now, the relaxivity tuning of T<sub>1</sub> and T<sub>2</sub> dual-modal MRI nanoprobes has been accomplished through the dopant, size, and morphology of the nanoprobes, leaving room for bioapplications. However, a surface engineering method for the relaxivity tuning was seldom reported. Here, we report the novel relaxivity tuning method based on the surface engineering of dual-mode <i>T</i><sub>1</sub>–<i>T</i><sub>2</sub> MRI nanoprobes (DMNPs), along with protein interaction monitoring with the DMNPs as a potential biosensor application. Core nanoparticles (NPs) of europium-doped iron oxide (EuIO) are prepared by a thermal decomposition method. As surface materials, citrate (Cit), alendronate (Ale), and poly­(maleic anhydride-<i>alt</i>-1-octadecene)/poly­(ethylene glycol) (PP) are employed for the relaxivity tuning of the NPs based on surface engineering, resulting in EuIO-Cit, EuIO-Ale, and EuIO-PP, respectively. The key achievement of the current study is that the surface materials of the DMNP have significant impacts on the <i>r</i><sub>1</sub> and <i>r</i><sub>2</sub> relaxivities. The correlation between the hydrophobicity of the surface material and longitudinal relaxivity (<i>r</i><sub>1</sub>) of EuIO NPs presents an exponential decay feature. The <i>r</i><sub>1</sub> relaxivity of EuIO-Cit is 13.2-fold higher than that of EuIO-PP. EuIO can act as <i>T</i><sub>1</sub>–<i>T</i><sub>2</sub> dual-modal (EuIO-Cit) or <i>T</i><sub>2</sub>-dominated MRI contrast agents (EuIO-PP) depending on the surface engineering. The feasibility of using the resulting nanosystem as a sensor for environmental changes, such as albumin interaction, was also explored. The albumin interaction on the DMNP shows both <i>T</i><sub>1</sub> and <i>T</i><sub>2</sub> relaxation time changes as mutually confirmative information. The relaxivity tuning approach based on the surface engineering may provide an insightful strategy for bioapplications of DMNPs and give a fresh impetus for the development of novel stimuli-responsive MRI nanoplatforms with <i>T</i><sub>1</sub> and <i>T</i><sub>2</sub> dual-modality for various biomedical applications

    Surface-Independent Antibacterial Coating Using Silver Nanoparticle-Generating Engineered Mussel Glue

    No full text
    During implant surgeries, antibacterial agents are needed to prevent bacterial infections, which can cause the formation of biofilms between implanted materials and tissue. Mussel adhesive proteins (MAPs) derived from marine mussels are bioadhesives that show strong adhesion and coating ability on various surfaces even in wet environment. Here, we proposed a novel surface-independent antibacterial coating strategy based on the fusion of MAP to a silver-binding peptide, which can synthesize silver nanoparticles having broad antibacterial activity. This sticky recombinant fusion protein enabled the efficient coating on target surface and the easy generation of silver nanoparticles on the coated-surface under mild condition. The biosynthesized silver nanoparticles showed excellent antibacterial efficacy against both Gram-positive and Gram-negative bacteria and also revealed good cytocompatibility with mammalian cells. In this coating strategy, MAP-silver binding peptide fusion proteins provide hybrid environment incorporating inorganic silver nanoparticle and simultaneously mediate the interaction of silver nanoparticle with surroundings. Moreover, the silver nanoparticles were fully synthesized on various surfaces including metal, plastic, and glass by a simple, surface-independent coating manner, and they were also successfully synthesized on a nanofiber surface fabricated by electrospinning of the fusion protein. Thus, this facile surface-independent silver nanoparticle-generating antibacterial coating has great potential to be used for the prevention of bacterial infection in diverse biomedical fields

    Mussel-Mimetic Protein-Based Adhesive Hydrogel

    No full text
    Hydrogel systems based on cross-linked polymeric materials which could provide both adhesion and cohesion in wet environment have been considered as a promising formulation of tissue adhesives. Inspired by marine mussel adhesion, many researchers have tried to exploit the 3,4-dihydroxyphenylalanine (DOPA) molecule as a cross-linking mediator of synthetic polymer-based hydrogels which is known to be able to achieve cohesive hardening as well as adhesive bonding with diverse surfaces. Beside DOPA residue, composition of other amino acid residues and structure of mussel adhesive proteins (MAPs) have also been considered important elements for mussel adhesion. Herein, we represent a novel protein-based hydrogel system using DOPA-containing recombinant MAP. Gelation can be achieved using both oxdiation-induced DOPA quinone-mediated covalent and Fe<sup>3+</sup>-mediated coordinative noncovalent cross-linking. Fe<sup>3+</sup>-mediated hydrogels show deformable and self-healing viscoelastic behavior in rheological analysis, which is also well-reflected in bulk adhesion strength measurement. Quinone-mediated hydrogel has higher cohesive strength and can provide sufficient gelation time for easier handling. Collectively, our newly developed MAP hydrogel can potentially be used as tissue adhesive and sealant for future applications
    corecore