27,047 research outputs found

    Effects of squeezing on quantum nonlocality of superpositions of coherent states

    Full text link
    We analyze effects of squeezing upon superpositions of coherent states (SCSs) and entangled coherent states (ECSs) for Bell-inequality tests. We find that external squeezing can always increase the degrees of Bell violations, if the squeezing direction is properly chosen, for the case of photon parity measurements. On the other hand, when photon on/off measurements are used, the squeezing operation can enhance the degree of Bell violations only for moderate values of amplitudes and squeezing. We point out that a significant improvement is required over currently available squeezed SCSs in order to directly demonstrate a Bell-inequality violation in a real experiment.Comment: 7 pages, 4 figures, accepted for publication in Phys. Rev.

    Testing non-local realism with entangled coherent states

    Full text link
    We investigate the violation of non-local realism using entangled coherent states (ECS) under nonlinear operations and homodyne measurements. We address recently proposed Leggett-type inequalities, including a class of optimized incompatibility ones and thoroughly assess the effects of detection inefficiency.Comment: 7 pages, 6 figures, RevTeX4, accepted for publication in Phys. Rev.

    Production of entanglement with highly-mixed states

    Full text link
    We study production of entanglement with highly-mixed states. We find that entanglement between highly mixed states can be generated via a direct unitary interaction even when both states have purities arbitrarily close to zero. This indicates that purity of a subsystem is not required for entanglement generation. Our result is in contrast to previous studies where the importance of the subsystem purity was emphasized.Comment: 4 pages, 5 figure

    Generation of macroscopic superposition states with small nonlinearity

    Get PDF
    We suggest a scheme to generate a macroscopic superposition state (Schrodinger cat state) of a free-propagating optical field using a beam splitter, homodyne measurement and a very small Kerr nonlinear effect. Our scheme makes it possible to considerably reduce the required nonlinear effect to generate an optical cat state using simple and efficient optical elements.Comment: Significantly improved version, to be published in PRA as a Rapid Communicatio

    Entanglement of mixed macroscopic superpositions: an entangling-power study

    Get PDF
    We investigate entanglement properties of a recently introduced class of macroscopic quantum superpositions in two-mode mixed states. One of the tools we use in order to infer the entanglement in this non-Gaussian class of states is the power to entangle a qubit system. Our study reveals features which are hidden in a standard approach to entanglement investigation based on the uncertainty principle of the quadrature variables. We briefly describe the experimental setup corresponding to our theoretical scenario and a suitable modification of the protocol which makes our proposal realizable within the current experimental capabilities.Comment: 9 pages, 7 figures, RevTeX

    GHZ-type and W-type entangled coherent states: generation and Bell-type inequality tests without photon counting

    Get PDF
    We study GHZ-type and W-type three-mode entangled coherent states. Both the types of entangled coherent states violate Mermin's version of the Bell inequality with threshold photon detection (i.e., without photon counting). Such an experiment can be performed using linear optics elements and threshold detectors with significant Bell violations for GHZ-type entangled coherent states. However, to demonstrate Bell-type inequality violations for W-type entangled coherent states, additional nonlinear interactions are needed. We also propose an optical scheme to generate W-type entangled coherent states in free-traveling optical fields. The required resources for the generation are a single-photon source, a coherent state source, beam splitters, phase shifters, photodetectors, and Kerr nonlinearities. Our scheme does not necessarily require strong Kerr nonlinear interactions, i.e., weak nonlinearities can be used for the generation of the W-type entangled coherent states. Furthermore, it is also robust against inefficiencies of the single-photon source and the photon detectors.Comment: 8 pages, 5 figures, to be published in Phys. Rev.
    • …
    corecore