1,004 research outputs found

    Scaling and the prediction of energy spectra in decaying hydrodynamic turbulence

    Full text link
    Few rigorous results are derived for fully developed turbulence. By applying the scaling properties of the Navier-Stokes equation we have derived a relation for the energy spectrum valid for unforced or decaying isotropic turbulence. We find the existence of a scaling function ψ\psi. The energy spectrum can at any time by a suitable rescaling be mapped onto this function. This indicates that the initial (primordial) energy spectrum is in principle retained in the energy spectrum observed at any later time, and the principle of permanence of large eddies is derived. The result can be seen as a restoration of the determinism of the Navier-Stokes equation in the mean. We compare our results with a windtunnel experiment and find good agreement.Comment: 4 pages, 1 figur

    Classical Boundary-value Problem in Riemannian Quantum Gravity and Self-dual Taub-NUT-(anti)de Sitter Geometries

    Full text link
    The classical boundary-value problem of the Einstein field equations is studied with an arbitrary cosmological constant, in the case of a compact (S3S^{3}) boundary given a biaxial Bianchi-IX positive-definite three-metric, specified by two radii (a,b).(a,b). For the simplest, four-ball, topology of the manifold with this boundary, the regular classical solutions are found within the family of Taub-NUT-(anti)de Sitter metrics with self-dual Weyl curvature. For arbitrary choice of positive radii (a,b),(a,b), we find that there are three solutions for the infilling geometry of this type. We obtain exact solutions for them and for their Euclidean actions. The case of negative cosmological constant is investigated further. For reasonable squashing of the three-sphere, all three infilling solutions have real-valued actions which possess a ``cusp catastrophe'' structure with a non-self-intersecting ``catastrophe manifold'' implying that the dominant contribution comes from the unique real positive-definite solution on the ball. The positive-definite solution exists even for larger deformations of the three-sphere, as long as a certain inequality between aa and bb holds. The action of this solution is proportional to −a3-a^{3} for large a(∌b)a (\sim b) and hence larger radii are favoured. The same boundary-value problem with more complicated interior topology containing a ``bolt'' is investigated in a forthcoming paper.Comment: 20 pages, 11 figures; Latex; Revised version with important new results on real infilling solutions and corrections. To appear in Nuclear Physics B, issue 648 (1,2), pp. 397-41

    Processing and mechanical properties of magnesium-lithium composites containing steel fibers

    Get PDF
    Deformation-processed metal-metal composites (DMMC) of Mg-Li alloys containing steel reinforcing fibers were prepared by infiltrating a preform of steel wool with the molten matrix. The Li content was varied to control the crystal structure of the matrix; Mg-4 wt pct Li is hexagonal close packed (hcp), while Mg-12 wt pct Li is body-centered cubic (bcc). The low carbon steel used as the reinforcing fiber is essentially bcc. The hcp/bcc and bcc/bcc composites were subsequently deformed by rolling and by extrusion/swaging and mechanically tested to relate the tensile strength of the composites to true deformation strain. The hcp/bcc composites had limited formability at temperatures up to 400 °C, while the bcc/bcc composites had excellent formability during sheet rolling at room temperature but limited formability during swaging at room temperature. The tensile strengths of the hcp/bcc composite rod and the bcc/bcc composite sheet and rod increased moderately with deformation, though less than predicted from rule-of-mixtures (ROM) calculations. This article presents the experimental data for these DMMC materials and comments on the possible effect of texture development in the matrix and fiber phases on the deformation characteristics of the composite material

    Bile Facilitates Human Norovirus Interactions with Diverse Histoblood Group Antigens, Compensating for Capsid Microvariation Observed in 2016–2017 GII.2 Strains

    Get PDF
    Human norovirus (HuNoV) is the leading cause of global infectious acute gastroenteritis, causing ~20% of reported diarrheal episodes. Typically, GII.4 strains cause 50–70% of yearly outbreaks, and pandemic waves of disease approximately every 2–7 years due to rapid evolution. Importantly, GII.4 dominance is occasionally challenged by the sudden emergence of other GII strains, most recently by GII.2 strains which peaked in 2016–2017, dramatically increasing from 1% to 20% of total HuNoV outbreaks. To determine if viral capsid evolution may account for the sudden rise in GII.2 outbreaks, Virus Like Particles (VLPs) of two 2016–2017 GII.2 strains were compared by antigenic and histo blood group antigen (HBGA) binding profiles to the prototypic 1976 GII.2 Snow Mountain Virus (SMV) strain. Despite >50 years of GII.2 strain persistence in human populations, limited sequence diversity and antigenic differences were identified between strains. However, capsid microvariation did affect HBGA binding patterns, with contemporary strains demonstrating decreased avidity for type A saliva. Furthermore, bile salts increased GII.2 VLP avidity for HBGAs, but did not alter antigenicity. These data indicate that large changes in antigenicity or receptor binding are unlikely to explain GII.2 emergence, in contrast to the pandemic GII.4 strains, and indicate that host factors such as waning or remodeling of serum or mucosal immunity likely contributed to the surge in GII.2 prevalence

    Virus–Host Interactions Between Nonsecretors and Human Norovirus

    Get PDF
    Background & Aims: Human norovirus infection is the leading cause of acute gastroenteritis. Genetic polymorphisms, mediated by the FUT2 gene (secretor enzyme), define strain susceptibility. Secretors express a diverse set of fucosylated histoblood group antigen carbohydrates (HBGA) on mucosal cells; nonsecretors (FUT2-/-) express a limited array of HBGAs. Thus, nonsecretors have less diverse norovirus strain infections, including resistance to the epidemiologically dominant GII.4 strains. Because future human norovirus vaccines will comprise GII.4 antigen and because secretor phenotype impacts GII.4 infection and immunity, nonsecretors may mimic young children immunologically in response to GII.4 vaccination, providing a needed model to study cross-protection in the context of limited pre-exposure. Methods: By using specimens collected from the first characterized nonsecretor cohort naturally infected with GII.2 human norovirus, we evaluated the breadth of serologic immunity by surrogate neutralization assays, and cellular activation and cytokine production by flow cytometry. Results: GII.2 infection resulted in broad antibody and cellular immunity activation that persisted for at least 30 days for T cells, monocytes, and dendritic cells, and for 180 days for blocking antibody. Multiple cellular lineages expressing interferon-γ and tumor necrosis factor-α dominated the response. Both T-cell and B-cell responses were cross-reactive with other GII strains, but not GI strains. To promote entry mechanisms, inclusion of bile acids was essential for GII.2 binding to nonsecretor HBGAs. Conclusions: These data support development of within-genogroup, cross-reactive antibody and T-cell immunity, key outcomes that may provide the foundation for eliciting broad immune responses after GII.4 vaccination in individuals with limited GII.4 immunity, including young children

    Islands of linkage in an ocean of pervasive recombination reveals two-speed evolution of human cytomegalovirus genomes

    Get PDF
    Human cytomegalovirus (HCMV) infects most of the population worldwide, persisting throughout the host's life in a latent state with periodic episodes of reactivation. While typically asymptomatic, HCMV can cause fatal disease among congenitally infected infants and immunocompromised patients. These clinical issues are compounded by the emergence of antiviral resistance and the absence of an effective vaccine, the development of which is likely complicated by the numerous immune evasins encoded by HCMV to counter the host's adaptive immune responses, a feature that facilitates frequent super-infections. Understanding the evolutionary dynamics of HCMV is essential for the development of effective new drugs and vaccines. By comparing viral genomes from uncultivated or low-passaged clinical samples of diverse origins, we observe evidence of frequent homologous recombination events, both recent and ancient, and no structure of HCMV genetic diversity at the whole-genome scale. Analysis of individual gene-scale loci reveals a striking dichotomy: while most of the genome is highly conserved, recombines essentially freely and has evolved under purifying selection, 21 genes display extreme diversity, structured into distinct genotypes that do not recombine with each other. Most of these hyper-variable genes encode glycoproteins involved in cell entry or escape of host immunity. Evidence that half of them have diverged through episodes of intense positive selection suggests that rapid evolution of hyper-variable loci is likely driven by interactions with host immunity. It appears that this process is enabled by recombination unlinking hyper-variable loci from strongly constrained neighboring sites. It is conceivable that viral mechanisms facilitating super-infection have evolved to promote recombination between diverged genotypes, allowing the virus to continuously diversify at key loci to escape immune detection, while maintaining a genome optimally adapted to its asymptomatic infectious lifecycle

    Spanning forests and the q-state Potts model in the limit q \to 0

    Get PDF
    We study the q-state Potts model with nearest-neighbor coupling v=e^{\beta J}-1 in the limit q,v \to 0 with the ratio w = v/q held fixed. Combinatorially, this limit gives rise to the generating polynomial of spanning forests; physically, it provides information about the Potts-model phase diagram in the neighborhood of (q,v) = (0,0). We have studied this model on the square and triangular lattices, using a transfer-matrix approach at both real and complex values of w. For both lattices, we have computed the symbolic transfer matrices for cylindrical strips of widths 2 \le L \le 10, as well as the limiting curves of partition-function zeros in the complex w-plane. For real w, we find two distinct phases separated by a transition point w=w_0, where w_0 = -1/4 (resp. w_0 = -0.1753 \pm 0.0002) for the square (resp. triangular) lattice. For w > w_0 we find a non-critical disordered phase, while for w < w_0 our results are compatible with a massless Berker-Kadanoff phase with conformal charge c = -2 and leading thermal scaling dimension x_{T,1} = 2 (marginal operator). At w = w_0 we find a "first-order critical point": the first derivative of the free energy is discontinuous at w_0, while the correlation length diverges as w \downarrow w_0 (and is infinite at w = w_0). The critical behavior at w = w_0 seems to be the same for both lattices and it differs from that of the Berker-Kadanoff phase: our results suggest that the conformal charge is c = -1, the leading thermal scaling dimension is x_{T,1} = 0, and the critical exponents are \nu = 1/d = 1/2 and \alpha = 1.Comment: 131 pages (LaTeX2e). Includes tex file, three sty files, and 65 Postscript figures. Also included are Mathematica files forests_sq_2-9P.m and forests_tri_2-9P.m. Final journal versio

    The Planetary Nebula Luminosity Function at the Dawn of Gaia

    Full text link
    The [O III] 5007 Planetary Nebula Luminosity Function (PNLF) is an excellent extragalactic standard candle. In theory, the PNLF method should not work at all, since the luminosities of the brightest planetary nebulae (PNe) should be highly sensitive to the age of their host stellar population. Yet the method appears robust, as it consistently produces < 10% distances to galaxies of all Hubble types, from the earliest ellipticals to the latest-type spirals and irregulars. It is therefore uniquely suited for cross-checking the results of other techniques and finding small offsets between the Population I and Population II distance ladders. We review the calibration of the method and show that the zero points provided by Cepheids and the Tip of the Red Giant Branch are in excellent agreement. We then compare the results of the PNLF with those from Surface Brightness Fluctuation measurements, and show that, although both techniques agree in a relative sense, the latter method yields distances that are ~15% larger than those from the PNLF. We trace this discrepancy back to the calibration galaxies and argue that, due to a small systematic error associated with internal reddening, the true distance scale likely falls between the extremes of the two methods. We also demonstrate how PNLF measurements in the early-type galaxies that have hosted Type Ia supernovae can help calibrate the SN Ia maximum magnitude-rate of decline relation. Finally, we discuss how the results from space missions such as Kepler and Gaia can help our understanding of the PNLF phenomenon and improve our knowledge of the physics of local planetary nebulae.Comment: 12 pages, invited review at the conference "The Fundamental Cosmic Distance Scale: State of the Art and Gaia Perspective", to appear in Astrophysics and Space Scienc

    A mathematical framework for critical transitions: normal forms, variance and applications

    Full text link
    Critical transitions occur in a wide variety of applications including mathematical biology, climate change, human physiology and economics. Therefore it is highly desirable to find early-warning signs. We show that it is possible to classify critical transitions by using bifurcation theory and normal forms in the singular limit. Based on this elementary classification, we analyze stochastic fluctuations and calculate scaling laws of the variance of stochastic sample paths near critical transitions for fast subsystem bifurcations up to codimension two. The theory is applied to several models: the Stommel-Cessi box model for the thermohaline circulation from geoscience, an epidemic-spreading model on an adaptive network, an activator-inhibitor switch from systems biology, a predator-prey system from ecology and to the Euler buckling problem from classical mechanics. For the Stommel-Cessi model we compare different detrending techniques to calculate early-warning signs. In the epidemics model we show that link densities could be better variables for prediction than population densities. The activator-inhibitor switch demonstrates effects in three time-scale systems and points out that excitable cells and molecular units have information for subthreshold prediction. In the predator-prey model explosive population growth near a codimension two bifurcation is investigated and we show that early-warnings from normal forms can be misleading in this context. In the biomechanical model we demonstrate that early-warning signs for buckling depend crucially on the control strategy near the instability which illustrates the effect of multiplicative noise.Comment: minor corrections to previous versio
    • 

    corecore