48 research outputs found

    Eco-hydrological process simulations within an integrated surface water-groundwater model

    Get PDF
    There are several key modelling challenges in addressing the complementary requirements of the Water Framework Directive and the Groundwater Directive. The first is to consider groundwater, surface water, water quality and ecosystems as an integrated system and develop modelling tools capable of representing these interactions. For example, the restoration of wetlands often requires an understanding of the interaction of surface water and groundwater quantity and quality. Secondly while static indicator-based or statistical approaches are widely used for overall management, the actual ecosystem is highly dynamic and both the actual response to different threats and impact of measures will also be dynamic. To address these challenges a new integrated eco-hydrological modelling tool has been developed that allows hydrologists and ecologists to represent the complex and dynamic interactions occurring including surface water groundwater interactions within a catchment. This is achieved by integrating a general ecological modelling tool into an integrated catchment hydrological modelling framework, MIKE SHE. The capabilities of this new tool are evaluated using analytical solutions and laboratory experiments. Finally we demonstrate the practical application of this tool to two case studies where the interaction of surface water and ground water are important for the ecosystem. The importance of the surface water groundwater dynamics for a riparian wetland on the Odense stream in Denmark is examined and simulations compared to field observations in the wetland. The Silver Creek ecosystem is controlled large-scale interactions of surface water and groundwater systems in the Lower Wood River Valley, USA. We examine ecological impacts related to the flows and temperatures in the Silver Creek ecosystem which are important for the fish population. We show that different water management scenarios can have significant impacts on the ecosystem

    Naturlig ventilation til køling af boliger

    Get PDF

    BRCA1-regulated RRM2 expression protects glioblastoma cells from endogenous replication stress and promotes tumorigenicity

    Get PDF
    Oncogene-evoked replication stress (RS) fuels genomic instability in diverse cancer types. Here we report that BRCA1, traditionally regarded a tumour suppressor, plays an unexpected tumour-promoting role in glioblastoma (GBM), safeguarding a protective response to supraphysiological RS levels. Higher BRCA1 positivity is associated with shorter survival of glioma patients and the abrogation of BRCA1 function in GBM enhances RS, DNA damage (DD) accumulation and impairs tumour growth. Mechanistically, we identify a novel role of BRCA1 as a transcriptional co-activator of RRM2 (catalytic subunit of ribonucleotide reductase), whereby BRCA1-mediated RRM2 expression protects GBM cells from endogenous RS, DD and apoptosis. Notably, we show that treatment with a RRM2 inhibitor triapine reproduces the BRCA1-depletion GBM-repressive phenotypes and sensitizes GBM cells to PARP inhibition. We propose that GBM cells are addicted to the RS-protective role of the BRCA1-RRM2 axis, targeting of which may represent a novel paradigm for therapeutic intervention in GBM

    Human Monoclonal Antibodies to a Novel Cluster of Conformational Epitopes on HCV E2 with Resistance to Neutralization Escape in a Genotype 2a Isolate

    Get PDF
    The majority of broadly neutralizing antibodies to hepatitis C virus (HCV) are against conformational epitopes on the E2 glycoprotein. Many of them recognize overlapping epitopes in a cluster, designated as antigenic domain B, that contains residues G530 and D535. To gain information on other regions that will be relevant for vaccine design, we employed yeast surface display of antibodies that bound to genotype 1a H77C E2 mutant proteins containing a substitution either at Y632A (to avoid selecting non-neutralizing antibodies) or D535A. A panel of nine human monoclonal antibodies (HMAbs) was isolated and designated as HC-84-related antibodies. Each HMAb neutralized cell culture infectious HCV (HCVcc) with genotypes 1–6 envelope proteins with varying profiles, and each inhibited E2 binding to the viral receptor CD81. Five of these antibodies neutralized representative genotypes 1–6 HCVcc. Epitope mapping identified a cluster of overlapping epitopes that included nine contact residues in two E2 regions encompassing aa418–446 and aa611–616. Effect on virus entry was measured using H77C HCV retroviral pseudoparticles, HCVpp, bearing an alanine substitution at each of the contact residues. Seven of ten mutant HCVpp showed over 90% reduction compared to wild-type HCVpp and two others showed approximately 80% reduction. Interestingly, four of these antibodies bound to a linear E2 synthetic peptide encompassing aa434–446. This region on E2 has been proposed to elicit non-neutralizing antibodies in humans that interfere with neutralizing antibodies directed at an adjacent E2 region from aa410–425. The isolation of four HC-84 HMAbs binding to the peptide, aa434–446, proves that some antibodies to this region are to highly conserved epitopes mediating broad virus neutralization. Indeed, when HCVcc were passaged in the presence of each of these antibodies, virus escape was not observed. Thus, the cluster of HC-84 epitopes, designated as antigenic domain D, is relevant for vaccine design for this highly diverse virus

    Flow and transport in Riparian Zones

    No full text
    corecore