4 research outputs found

    Comparison of acute to chronic ratios between silver and gold nanoparticles, using <i>Ceriodaphnia dubia</i>

    No full text
    <p>As integration of nanoparticles (NPs) into products becomes more common, the need to address the paucity of chronic hazard information for aquatic environments required to determine risk potential increases. This study generated acute and chronic toxicity reference values for <i>Ceriodaphnia dubia</i> exposed to 20 and 100 nm silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) to generate and evaluate potential differences in acute-to-chronic ratios (ACR) using two different feeding methods. A modified feeding procedure was employed alongside the standard procedures to investigate the influence of food on organism exposure. An 8-h period before food was added allowed direct organism exposure to NP dispersions (and associated ions) without food-to-NP interactions. The AgNPs [chronic lethal median concentrations (LC50) between 18.7 and 31.9 µg/L] were substantially more toxic than AuNPs (LC50 = 21 507 to >26 384 µg/L). The modified chronic testing method resulted in greater sensitivity in AgNPs exposures. However, the modified feeding ration had less of an effect in exposures to the larger (100 nm) AgNPs compared to smaller particles (20 nm). The ACRs for AgNPs using the standard feeding ration were 1.6 and 3.5 for 20 nm and 100 nm, respectively. The ACRs for AgNPs using the modified feeding ration were 3.4 and 7.6 for 20 nm and 100 nm NPs, respectively. This supports that the addition of the standard feeding ration decreases <i>C. dubia</i> chronic sensitivity to AgNPs, although it must also be recognized organisms may be sensitized due to less access to food. The ACRs for 20 nm and 100 nm AuNPs (standard ration only) were 4.0 and 3.0, respectively. It is important to also consider that dissolved Ag<sup>+</sup> ions are more toxic than AgNPs, based on both acute toxicity values in the cited literature and chronic toxicity thresholds generated in this study that support existing thresholds that Ag<sup>+</sup> are likely protective of AgNPs effects.</p

    Assessment of Chemical Mixtures and Groundwater Effects on <i>Daphnia magna</i> Transcriptomics

    No full text
    Small organisms can be used as biomonitoring tools to assess chemicals in the environment. Chemical stressors are especially hard to assess and monitor when present as complex mixtures. Here, fifteen polymerase chain reaction assays targeting <i>Daphnia magna</i> genes were calibrated to responses elicited in <i>D. magna</i> exposed for 24 h to five different doses each of the munitions constituents 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, 2,6-dinitrotoluene, trinitrobenzene, dinitrobenzene, or 1,3,5-trinitro-1,3,5-triazacyclohexane. A piecewise-linear model for log-fold expression changes in gene assays was used to predict response to munitions mixtures and contaminated groundwater under the assumption that chemical effects were additive. The correlations of model predictions with actual expression changes ranged from 0.12 to 0.78 with an average of 0.5. To better understand possible mixture effects, gene expression changes from all treatments were compared using high-density microarrays. Whereas mixtures and groundwater exposures had genes and gene functions in common with single chemical exposures, unique functions were also affected, which was consistent with the nonadditivity of chemical effects in these mixtures. These results suggest that, while gene behavior in response to chemical exposure can be partially predicted based on chemical exposure, estimation of the composition of mixtures from chemical responses is difficult without further understanding of gene behavior in mixtures. Future work will need to examine additive and nonadditive mixture effects using a much greater range of different chemical classes in order to clarify the behavior and predictability of complex mixtures

    Gaining a Critical Mass: A Dose Metric Conversion Case Study Using Silver Nanoparticles

    No full text
    Mass concentration is the standard convention to express exposure in ecotoxicology for dissolved substances. However, nanotoxicology has challenged the suitability of the mass concentration dose metric. Alternative metrics often discussed in the literature include particle number, surface area, and ion release (kinetics, equilibrium). It is unlikely that any single metric is universally applicable to all types of nanoparticles. However, determining the optimal metric for a specific type of nanoparticle requires novel studies to generate supportive data and employ methods to compensate for current analytical capability gaps. This investigation generated acute toxicity data for two standard species (<i>Ceriodaphnia dubia</i>, <i>Pimephales promelas</i>) exposed to five sizes (10, 20, 30, 60, 100 nm) of monodispersed citrate- and polyvinylpyrrolidone-coated silver nanoparticles. Particles were sized by various techniques to populate available models for expressing the particle number, surface area, and dissolved fraction. Results indicate that the acute toxicity of the tested silver nanoparticles is best expressed by ion release, and is relatable to total exposed surface area. Particle number was not relatable to the observed acute silver nanoparticle effects

    Fate and Toxicity of CuO Nanospheres and Nanorods used in Al/CuO Nanothermites Before and After Combustion

    No full text
    Although nanotechnology advancements should be fostered, the environmental health and safety (EHS) of nanoparticles used in technologies must be quantified simultaneously. However, most EHS studies assess the potential implications of the free nanoparticles which may not be directly applicable to the EHS of particles incorporated into in-use technologies. This investigation assessed the aquatic toxicological implications of copper oxide (CuO) nanospheres relative to CuO nanorods used in nanoenergetic applications to improve combustion. Particles were tested in both the as-received form and following combustion of a CuO/aluminum nanothermite. Results indicated nanospheres were more stable in water and slowly released ions, while higher surface area nanorods initially released more ions and were more toxic but generally less stable. After combustion, particles sintered into larger, micrometer-scale aggregates, which may lower toxicity potential to pelagic organisms due to deposition from water to sediment and reduced bioavailability after complexation with sediment organic matter. Whereas the larger nanothermite residues settled rapidly, implying lower persistence in water, their potential to release dissolved Cu was higher which led to greater toxicity to <i>Ceriodaphnia dubia</i> relative to parent CuO material (nanosphere or rod). This study illustrates the importance of considering the fate and toxicology of nanoparticles in context with their relevant in-use applications
    corecore