3 research outputs found

    Photorhabdus luminescens lectin A (PllA) : A new probe for detecting α-galactoside-terminating glycoconjugates

    Get PDF
    Lectins play important roles in infections by pathogenic bacteria, for example, in host colonization, persistence, and biofilm formation. The Gram-negative entomopathogenic bacterium Photorhabdus luminescens symbiotically lives in insect-infecting Heterorhabditis nematodes and kills the insect host upon invasion by the nematode. The P. luminescens genome harbors the gene plu2096, coding for a novel lectin that we named PllA. We analyzed the binding properties of purified PllA with a glycan array and a binding assay in solution. Both assays revealed a strict specificity of PllA for -galactoside–terminating glycoconjugates. The crystal structures of apo PllA and complexes with three different ligands revealed the molecular basis for the strict specificity of this lectin. Furthermore, we found that a 90° twist in subunit orientation leads to a peculiar quaternary structure compared with that of its ortholog LecA from Pseudomonas aeruginosa.We also investigated the utility of PllA as a probe for detecting -galactosides. The -Gal epitope is present on wildtype pig cells and is the main reason for hyperacute organ rejection in pig to primate xenotransplantation. We noted that PllA specifically recognizes this epitope on the glycan array and demonstrated that PllA can be used as a fluorescent probe to detect this epitope on primary porcine cells in vitro. In summary, our biochemical and structural analyses of the P. luminescens lectin PllA have disclosed the structural basis for PllA’s high specificity for -galactoside–containing ligands, and we show that PllA can be used to visualize the -Gal epitope on porcine tissues

    Genetically encoded Ca2+ -sensor reveals details of porcine endothelial cell activation upon contact with human serum.

    Get PDF
    The activation of the endothelial surface in xenografts is still a poorly understood process and the consequences are unpredictable. The role of Ca2+ -messaging during the activation of endothelial cells is well recognized and routinely measured by synthetic Ca2+ -sensitive fluorophors. However, these compounds require fresh loading immediately before each experiment and in particular when grown in state-of-the-art 3D cell culture systems, endothelial cells are difficult to access with such sensors. Therefore, we developed transgenic pigs expressing a Ca2+ -sensitive protein and examined its principal characteristics. Primary transgenic endothelial cells stimulated by ATP showed a definite and short influx of Ca2+ into the cytosol, whereas exposure to human serum resulted in a more intense and sustained response. Surprisingly, not all endothelial cells reacted identically to a stimulus, rather activation took place in adjacent cells in a timely decelerated way and with distinct intensities. This effect was again more pronounced when cells were stimulated with human serum. Finally, we show clear evidence that antibody binding alone significantly activated endothelial cells, whereas antibody depletion dramatically reduced the stimulatory potential of serum. Transgenic porcine endothelial cells expressing a Ca2+ -sensor represent an interesting tool to dissect factors inducing activation of porcine endothelial cells after exposure to human blood or serum

    Photorhabdus luminescens lectin A (PllA) - a new probe for detecting α-galactoside-terminating glycoconjugates.

    Get PDF
    Lectins play important roles in infections by pathogenic bacteria, for example, in host colonization, persistence and biofilm formation. The Gram-negative entomopathogenic bacterium Photorhabdus luminescens symbiotically lives in insect-infecting Heterorhabditis nematodes and kills the insect host upon invasion by the nematode. The P. luminescens genome harbors the gene plu2096 coding for a novel lectin that we named PllA. We analyzed the binding properties of purified PllA with a glycan array and a binding assay in solution. Both assays revealed a strict specificity of PllA for alpha-galactoside-terminating glycoconjugates. The crystal structures of apo PllA and complexes with three different ligands revealed the molecular basis for the strict specificity of this lectin. Furthermore, we found that a 90 degree twist in subunit orientation leads to a peculiar quaternary structure compared with that of its ortholog LecA from Pseudomonas aeruginosa. We also investigated the utility of PllA as a probe for detecting alpha-galactosides. The alpha-Gal epitope is present on wild-type pig cells and the main reason for hyperacute organ rejection in pig to primate xenotransplantation. We noted that PllA specifically recognizes this epitope on the glycan array and demonstrated that PllA can be used as a fluorescent probe to detect this epitope on primary porcine cells in vitro. In summary, our biochemical and structural analyses of the P. luminescens lectin PllA have disclosed the structural basis for PllAs high specificity for alpha-galactoside-containing ligands, and we show that PllA can be used to visualize alpha-Gal epitope on porcine tissues
    corecore